A081585 Third row of Pascal-(1,3,1) array A081578.
1, 9, 33, 73, 129, 201, 289, 393, 513, 649, 801, 969, 1153, 1353, 1569, 1801, 2049, 2313, 2593, 2889, 3201, 3529, 3873, 4233, 4609, 5001, 5409, 5833, 6273, 6729, 7201, 7689, 8193, 8713, 9249, 9801, 10369, 10953, 11553, 12169, 12801, 13449, 14113
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
I:=[1,9,33]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 09 2012
-
Maple
seq(1+8*n^2, n=0..100); # Robert Israel, Sep 04 2015
-
Mathematica
LinearRecurrence[{3,-3,1}, {1,9,33}, 40] (* Vincenzo Librandi, Feb 09 2012 *)
-
PARI
for(n=0, 50, print1(8*n^2+1", ")); \\ Vincenzo Librandi, Feb 09 2012
-
Sage
[8*n^2 +1 for n in (0..40)] # G. C. Greubel, May 26 2021
Formula
a(n) = 8*n^2 + 1.
G.f.: (1+3*x)^2/(1-x)^3.
a(n) = a(n-1) + 16*n - 8 with a(0)=1. - Vincenzo Librandi, Aug 08 2010
From Amiram Eldar, Jul 15 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + (Pi/sqrt(8))*coth(Pi/sqrt(8)))/2.
Sum_{n>=0} (-1)^n/a(n) = (1 + (Pi/sqrt(8))*csch(Pi/sqrt(8)))/2. (End)
From Amiram Eldar, Feb 05 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = sqrt(2)*csch(Pi/sqrt(8))*sinh(Pi/2).
Product_{n>=1} (1 - 1/a(n)) = (Pi/sqrt(8))*csch(Pi/sqrt(8)). (End)
E.g.f.: (1 +8*x +8*x^2)*exp(x). - G. C. Greubel, May 26 2021
Comments