cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081585 Third row of Pascal-(1,3,1) array A081578.

Original entry on oeis.org

1, 9, 33, 73, 129, 201, 289, 393, 513, 649, 801, 969, 1153, 1353, 1569, 1801, 2049, 2313, 2593, 2889, 3201, 3529, 3873, 4233, 4609, 5001, 5409, 5833, 6273, 6729, 7201, 7689, 8193, 8713, 9249, 9801, 10369, 10953, 11553, 12169, 12801, 13449, 14113
Offset: 0

Views

Author

Paul Barry, Mar 23 2003

Keywords

Comments

The identity (8*n^2 +1)^2 - (64*n^2 +16)*n^2 = 1 can be written as a(n)^2 -A157912(n)*n^2 = 1 for n>0. - Vincenzo Librandi, Feb 09 2012

Crossrefs

Programs

  • Magma
    I:=[1,9,33]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 09 2012
    
  • Maple
    seq(1+8*n^2, n=0..100); # Robert Israel, Sep 04 2015
  • Mathematica
    LinearRecurrence[{3,-3,1}, {1,9,33}, 40] (* Vincenzo Librandi, Feb 09 2012 *)
  • PARI
    for(n=0, 50, print1(8*n^2+1", ")); \\ Vincenzo Librandi, Feb 09 2012
    
  • Sage
    [8*n^2 +1 for n in (0..40)] # G. C. Greubel, May 26 2021

Formula

a(n) = 8*n^2 + 1.
G.f.: (1+3*x)^2/(1-x)^3.
a(n) = a(n-1) + 16*n - 8 with a(0)=1. - Vincenzo Librandi, Aug 08 2010
a(n) = sqrt(8*(A000217(2*n-1)^2 +A000217(2*n)^2) +1). - J. M. Bergot, Sep 04 2015
From Amiram Eldar, Jul 15 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + (Pi/sqrt(8))*coth(Pi/sqrt(8)))/2.
Sum_{n>=0} (-1)^n/a(n) = (1 + (Pi/sqrt(8))*csch(Pi/sqrt(8)))/2. (End)
From Amiram Eldar, Feb 05 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = sqrt(2)*csch(Pi/sqrt(8))*sinh(Pi/2).
Product_{n>=1} (1 - 1/a(n)) = (Pi/sqrt(8))*csch(Pi/sqrt(8)). (End)
E.g.f.: (1 +8*x +8*x^2)*exp(x). - G. C. Greubel, May 26 2021