cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A275543 A081585 and A069129 interleaved.

Original entry on oeis.org

1, 1, 9, 17, 33, 49, 73, 97, 129, 161, 201, 241, 289, 337, 393, 449, 513, 577, 649, 721, 801, 881, 969, 1057, 1153, 1249, 1353, 1457, 1569, 1681, 1801, 1921, 2049, 2177, 2313, 2449, 2593, 2737, 2889, 3041, 3201, 3361, 3529, 3697, 3873, 4049, 4233, 4417, 4609
Offset: 0

Views

Author

Daniel Poveda Parrilla, Aug 01 2016

Keywords

Comments

a(A000129(n)) is a square.
(n^2)*a(n) = A275496(n) which is a triangular number.
(A000129(n)^2)*a(A000129(n)) = A275496(A000129(n)) = A001110(n) which is a square triangular number.
a(2n+1)/a(2n) is convergent to 1.

Examples

			a(1) = A275496(1) = 1.
a(5) = A275496(5)/25 = 1225/25 = 49.
a(7) = A275496(7)/49 = 4753/49 = 97.
a(12) = A275496(12)/144 = 41616/144 = 289.
		

Crossrefs

Cf. A081585(n) = a(2n), A069129(n) = a(2n + 1).

Programs

Formula

a(0) = 1; a(n) = A275496(n)/(n^2) for n > 0.
From Colin Barker, Aug 01 2016: (Start)
a(n) = (2*n^2 + (-1)^n).
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n > 3.
G.f.: (1 -x +7*x^2 +x^3) / ((1 - x)^3*(1 + x)).
(End)
From Daniel Poveda Parrilla, Aug 18 2016: (Start)
a(2n) = A077221(2n) + 1.
a(2n + 1) = A077221(2n + 1). (End)
Sum_{n>=0} 1/a(n) = (1 + (tan(c) + coth(c))*c)/2, where c = Pi/(2*sqrt(2)) is A093954. - Amiram Eldar, Aug 21 2022

A010006 Coordination sequence for C_3 lattice: a(n) = 16*n^2 + 2 (n>0), a(0)=1.

Original entry on oeis.org

1, 18, 66, 146, 258, 402, 578, 786, 1026, 1298, 1602, 1938, 2306, 2706, 3138, 3602, 4098, 4626, 5186, 5778, 6402, 7058, 7746, 8466, 9218, 10002, 10818, 11666, 12546, 13458, 14402, 15378, 16386, 17426, 18498, 19602, 20738, 21906, 23106, 24338, 25602, 26898
Offset: 0

Views

Author

N. J. A. Sloane, mbaake(AT)sunelc3.tphys.physik.uni-tuebingen.de (Michael Baake)

Keywords

Comments

If Y_i (i=1,2,3) are 2-blocks of a (2n+1)-set X then a(n-1) is the number of 5-subsets of X intersecting each Y_i (i=1,2,3). - Milan Janjic, Oct 28 2007
Also sequence found by reading the segment (1, 18) together with the line from 18, in the direction 18, 66, ..., in the square spiral whose vertices are the generalized decagonal numbers A074377. - Omar E. Pol, Nov 02 2012

Crossrefs

Cf. A206399. For the coordination sequences of other C_n lattices see A022144 (C_2), A010006 (C_3), A019560 - A019564 (C_4 through C_8), A035746 - A035787 (C_9 through C_50). Cf. A137513.

Programs

Formula

a(0)=1, a(n) = 16*n^2 + 2, n >= 1.
G.f.: (1+x)*(1+14*x+x^2)/(1-x)^3.
G.f. for coordination sequence of C_n lattice: (1/(1-z)^n)*Sum_{i=0..n} binomial(2*n, 2*i)*z^i.
E.g.f.: (x*(x+1)*16+2)*e^x - 1. - Gopinath A. R., Feb 14 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=1, a(1)=18, a(2)=66, a(3)=146. - Harvey P. Dale, Oct 15 2012
G.f. for sequence with interpolated zeros: cosh(6*arctanh(x)) = (1/2)*( ((1 - x)/(1 + x))^3 + ((1 + x)/(1 - x))^3) = 1 + 18*x^2 + 66*x^4 + 146*x^6 + .... More generally, cosh(2*n*arctanh(sqrt(x))) is the o.g.f. for the coordination sequence of the C_n lattice. Note that exp(t*arctanh(x)) is the e.g.f. for the Mittag_Leffler polynomials. See A137513. - Peter Bala, Apr 09 2017
Sum_{n>=0} 1/a(n) = 3/4 + sqrt(2)/16*Pi*coth( Pi*sqrt(2)/4) = 1.095237238050... - R. J. Mathar, May 07 2024
a(n) = 2*A081585(n), n>0. - R. J. Mathar, May 07 2024
a(n) = A069129(n)+A069129(n+1). - R. J. Mathar, May 07 2024

A081578 Pascal-(1,3,1) array.

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 9, 9, 1, 1, 13, 33, 13, 1, 1, 17, 73, 73, 17, 1, 1, 21, 129, 245, 129, 21, 1, 1, 25, 201, 593, 593, 201, 25, 1, 1, 29, 289, 1181, 1921, 1181, 289, 29, 1, 1, 33, 393, 2073, 4881, 4881, 2073, 393, 33, 1, 1, 37, 513, 3333, 10497, 15525, 10497, 3333, 513, 37, 1
Offset: 0

Views

Author

Paul Barry, Mar 23 2003

Keywords

Comments

One of a family of Pascal-like arrays. A007318 is equivalent to the (1,0,1)-array. A008288 is equivalent to the (1,1,1)-array. Rows include A016813, A081585, A081586. Coefficients of the row polynomials in the Newton basis are given by A013611.
As a number triangle, this is the Riordan array (1/(1-x), x*(1+3*x)/(1-x)). It has row sums A015518(n+1) and diagonal sums A103143. - Paul Barry, Jan 24 2005

Examples

			Square array begins as:
  1,  1,   1,   1,    1, ... A000012;
  1,  5,   9,  13,   17, ... A016813;
  1,  9,  33,  73,  129, ... A081585;
  1, 13,  73, 245,  593, ... A081586;
  1, 17, 129, 593, 1921, ...
As a triangle this begins:
  1;
  1,  1;
  1,  5,   1;
  1,  9,   9,    1;
  1, 13,  33,   13,     1;
  1, 17,  73,   73,    17,     1;
  1, 21, 129,  245,   129,    21,     1;
  1, 25, 201,  593,   593,   201,    25,    1;
  1, 29, 289, 1181,  1921,  1181,   289,   29,   1;
  1, 33, 393, 2073,  4881,  4881,  2073,  393,  33,  1;
  1, 37, 513, 3333, 10497, 15525, 10497, 3333, 513, 37, 1; - _Philippe Deléham_, Mar 15 2014
		

Crossrefs

Cf. Pascal (1,m,1) array: A123562 (m = -3), A098593 (m = -2), A000012 (m = -1), A007318 (m = 0), A008288 (m = 1), A081577 (m = 2), A081579 (m = 4), A081580 (m = 5), A081581 (m = 6), A081582 (m = 7), A143683 (m = 8).

Programs

  • Haskell
    a081578 n k = a081578_tabl !! n !! k
    a081578_row n = a081578_tabl !! n
    a081578_tabl = map fst $ iterate
       (\(us, vs) -> (vs, zipWith (+) (map (* 3) ([0] ++ us ++ [0])) $
                          zipWith (+) ([0] ++ vs) (vs ++ [0]))) ([1], [1, 1])
    -- Reinhard Zumkeller, Mar 16 2014
    
  • Magma
    A081578:= func< n,k,q | (&+[Binomial(k, j)*Binomial(n-j, k)*q^j: j in [0..n-k]]) >;
    [A081578(n,k,3): k in [0..n], n in [0..12]]; // G. C. Greubel, May 26 2021
    
  • Mathematica
    Table[Hypergeometric2F1[-k, k-n, 1, 4], {n,0,10}, {k,0,n}]//Flatten (* Jean-François Alcover, May 24 2013 *)
  • Sage
    flatten([[hypergeometric([-k, k-n], [1], 4).simplify() for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 26 2021

Formula

Square array T(n, k) defined by T(n, 0) = T(0, k) = 1, T(n, k) = T(n, k-1) + 3*T(n-1, k-1) + T(n-1, k).
Rows are the expansions of (1+3*x)^k/(1-x)^(k+1).
T(n,k) = Sum_{j=0..n} binomial(k,j-k)*binomial(n+k-j,k)*3^(j-k). - Paul Barry, Oct 23 2006
E.g.f. for the n-th subdiagonal of the triangle, n = 0,1,2,..., equals exp(x)*P(n,x), where P(n,x) is the polynomial Sum_{k = 0..n} binomial(n,k)*(4*x)^k/k!. For example, the e.g.f. for the second subdiagonal is exp(x)*(1 + 8*x + 16*x^2/2) = 1 + 9*x + 33*x^2/2! + 73*x^3/3! + 129*x^4/4! + 201*x^5/5! + .... - Peter Bala, Mar 05 2017
From G. C. Greubel, May 26 2021: (Start)
T(n, k, m) = Hypergeometric2F1([-k, k-n], [1], m+1), for m = 3.
T(n, k, m) = Sum_{j=0..n-k} binomial(k,j)*binomial(n-j,k)*m^j, for m = 3.
Sum_{k=0..n} T(n, k, 3) = A015518(n+1). (End)

A158575 a(n) = 32*n^2 + 1.

Original entry on oeis.org

1, 33, 129, 289, 513, 801, 1153, 1569, 2049, 2593, 3201, 3873, 4609, 5409, 6273, 7201, 8193, 9249, 10369, 11553, 12801, 14113, 15489, 16929, 18433, 20001, 21633, 23329, 25089, 26913, 28801, 30753, 32769, 34849, 36993, 39201, 41473, 43809, 46209, 48673, 51201, 53793
Offset: 0

Views

Author

Vincenzo Librandi, Mar 21 2009

Keywords

Comments

The identity (32*n^2 + 1)^2 - (256*n^2 + 16)*(2*n)^2 = 1 can be written as a(n)^2-A158574(n)*A005843(n)^2 = 1. - Comment rewritten by R. J. Mathar, Oct 16 2009
Sequence found by reading the line segment from 1 to 33 together with the line from 33, in the direction 33, 129, ..., in the square spiral whose vertices are the generalized 18-gonal numbers A274979. - Omar E. Pol, Apr 21 2021

Crossrefs

Cf. A274979 (generalized 18-gonal numbers).

Programs

  • Magma
    I:=[1, 33, 129]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]]; // Vincenzo Librandi, Feb 15 2012
    
  • Mathematica
    LinearRecurrence[{3, -3, 1}, {1, 33, 129}, 50] (* Vincenzo Librandi, Feb 15 2012 *)
    32*Range[0,40]^2+1 (* Harvey P. Dale, Jul 20 2021 *)
  • PARI
    for(n=0, 50, print1(32*n^2+1", ")); \\ Vincenzo Librandi, Feb 15 2012

Formula

G.f.: (1+30*x+33*x^2)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
For n > 0 a(n) = sqrt(8*(A000217(4*n-1)^2 + A000217(4*n)^2) + 1). - J. M. Bergot, Sep 03 2015
a(n) = A244082(n) + 1. - Omar E. Pol, Apr 21 2021
From Amiram Eldar, Mar 09 2023: (Start)
Sum_{n>=0} 1/a(n) = (1 + coth(Pi/(4*sqrt(2)))*Pi/(4*sqrt(2)))/2.
Sum_{n>=0} (-1)^n/a(n) = (1 + cosech(Pi/(4*sqrt(2)))*Pi/(4*sqrt(2)))/2. (End)
From Elmo R. Oliveira, Jan 16 2025: (Start)
E.g.f.: exp(x)*(1 + 32*x + 32*x^2).
a(n) = A081585(2*n). (End)

Extensions

a(0) added by R. J. Mathar, Oct 16 2009

A081586 Fourth row of Pascal-(1,3,1) array A081578.

Original entry on oeis.org

1, 13, 73, 245, 593, 1181, 2073, 3333, 5025, 7213, 9961, 13333, 17393, 22205, 27833, 34341, 41793, 50253, 59785, 70453, 82321, 95453, 109913, 125765, 143073, 161901, 182313, 204373, 228145, 253693, 281081, 310373, 341633, 374925, 410313, 447861
Offset: 0

Views

Author

Paul Barry, Mar 23 2003

Keywords

Crossrefs

Programs

  • Magma
    [(3+28*n-24*n^2+32*n^3)/3: n in [0..40]]; // Vincenzo Librandi, Nov 16 2011
    
  • Mathematica
    Table[(3+28n-24n^2+32n^3)/3,{n,0,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{1,13,73,245},40] (* Harvey P. Dale, Nov 06 2011 *)
  • Sage
    [(3+28*n-24*n^2+32*n^3)/3 for n in (0..40)] # G. C. Greubel, May 26 2021

Formula

From Harvey P. Dale, Nov 06 2011: (Start)
a(n) = (3 + 28*n - 24*n^2 + 32*n^3)/3.
G.f.: (1+3*x)^3/(1-x)^4.
a(0)=1, a(1)=13, a(2)=73, a(3)=245, a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). (End)
E.g.f.: (1/3)*(3 + 36*x + 72*x^2 + 32*x^3)*exp(x). - G. C. Greubel, May 26 2021

A185438 a(n) = 8*n^2 - 2*n + 1.

Original entry on oeis.org

1, 7, 29, 67, 121, 191, 277, 379, 497, 631, 781, 947, 1129, 1327, 1541, 1771, 2017, 2279, 2557, 2851, 3161, 3487, 3829, 4187, 4561, 4951, 5357, 5779, 6217, 6671, 7141, 7627, 8129, 8647, 9181, 9731, 10297, 10879, 11477, 12091, 12721, 13367, 14029, 14707, 15401, 16111, 16837, 17579
Offset: 0

Views

Author

Paul Curtz, Feb 03 2011

Keywords

Comments

Odd numbers (A005408) written clockwise as a square spiral:
.
41--43--45--47--49--51
| |
39 13--15--17--19 53
| | | |
37 11 1---3 21 55
| | | | |
35 9---7---5 23 57
| | |
33--31--29--27--25 59
|
71--69--67--65--63--61
.
Walking in straight lines away from the center:
1, 17, 49, ... = A069129(n+1) = 1 - 8*n + 8*n^2,
1, 3, 21, ... = A033567(n) = 1 - 6*n + 8*n^2,
1, 15, 45, ... = A014634(n) = 1 + 6*n + 8*n^2,
1, 5, 25, ... = A080856(n) = 1 - 4*n + 8*n^2,
1, 13, 41, ... = A102083(n) = 1 + 4*n + 8*n^2,
1, 7, 29, ... = a(n) = 1 - 2*n + 8*n^2,
1, 11, 37, ... = A188135(n) = 1 + 2*n + 8*n^2,
1, 9, 33, ... = A081585(n) = 1 + 8*n^2,
5, 29, 69, ... = A108928(n+1) = -3 + 8*n^2,
7, 31, 71, ... = A157914(n+1) = -1 + 8*n^2,
9, 35, 77, ... = A033566(n+1) = -1 + 2*n + 8*n^2.
All are quadrisections of sequences in A181407(n) (example: A014634(n) and A033567(n) in A064038(n+1)) or of this family (?): a(n) is a quadrisection of f(n) = 1,1,1,1,2,7,11,8,11,29,37,23,28,67,79,46,... f(n) is just before A064038(n+1) (fifth vertical) in A181407(n). The companion to a(n) is A188135(n), another quadrisection of f(n). Two last quadrisections of f(n) are A054552(n) and A033951(n).
For n >= 1, bisection of A193867. - Omar E. Pol, Aug 16 2011
Also the sequence may be obtained by starting with the segment (1, 7) followed by the line from 7 in the direction 7, 29, ... in the square spiral whose vertices are the generalized hexagonal numbers (A000217). - Omar E. Pol, Aug 01 2016

Crossrefs

Programs

Formula

a(n) = a(n-1) + 16*n - 10 (n > 0).
a(n) = 2*a(n-1) - a(n-2) + 16 (n > 1).
a(n) = 3*(n-1) - 3*a(n-2) + a(n-3) (n > 2).
G.f.: (-1 - 4*x - 11*x^2)/(x-1)^3. - R. J. Mathar, Feb 03 2011
a(n) = A014635(n) + 1. - Bruno Berselli, Apr 09 2011
E.g.f.: exp(x)*(1 + 6*x + 8*x^2). - Elmo R. Oliveira, Nov 17 2024

A118465 a(n) = 8*n^3 + n.

Original entry on oeis.org

0, 9, 66, 219, 516, 1005, 1734, 2751, 4104, 5841, 8010, 10659, 13836, 17589, 21966, 27015, 32784, 39321, 46674, 54891, 64020, 74109, 85206, 97359, 110616, 125025, 140634, 157491, 175644, 195141, 216030, 238359, 262176, 287529, 314466, 343035, 373284, 405261
Offset: 0

Views

Author

Mohamed Bouhamida, May 16 2006, Oct 02 2007

Keywords

Comments

(8*n^3 + n, 8*n^3 - n) solves the Diophantine equation 2*(X-Y)^3-(X+Y)=0.
(m*(2n)^k+n, m*(2n)^k-n) solves the Diophantine equation: 2m*(X-Y)^k-(X+Y)=0 with X>=Y,k>=2 and where m is a positive integer. Also ((m*n^k+n)/2, (m*n^k-n)/2) solves the Diophantine equation: m*(X-Y)^k-(X+Y)=0 with X>=Y,k>=2 where m is an odd number.
24*a(n) = (4*n+1)^3 + (4*n)^3 + (4*n-1)^3. - Bruno Berselli, May 12 2014

Crossrefs

Programs

  • Magma
    [8*n^3 + n: n in [0..30]]; // Wesley Ivan Hurt, May 13 2014
  • Maple
    A118465:=n->8*n^3 + n; seq(A118465(n), n=0..30); # Wesley Ivan Hurt, May 13 2014
  • Mathematica
    Table[8 n^3 + n, {n, 0, 35}]
    CoefficientList[Series[3 x (x + 3) (3 x + 1)/(-1 + x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, May 13 2014 *)
    LinearRecurrence[{4,-6,4,-1},{0,9,66,219},40] (* Harvey P. Dale, Feb 01 2023 *)

Formula

G.f.: 3*x*(x+3)*(3*x+1)/(-1+x)^4. - R. J. Mathar, Nov 14 2007
a(n) = n*A081585(n). - Vincenzo Librandi, May 13 2014
From Elmo R. Oliveira, Aug 07 2025: (Start)
E.g.f.: exp(x)*x*(9 + 24*x + 8*x^2).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = 3*A143166(n). (End)

Extensions

Edited by Stefan Steinerberger, Jul 24 2007

A361682 Array read by descending antidiagonals. A(n, k) is the number of multiset combinations of {0, 1} whose type is defined in the comments. Also A(n, k) = hypergeom([-k, -2], [1], n).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 6, 5, 1, 1, 10, 13, 7, 1, 1, 15, 25, 22, 9, 1, 1, 21, 41, 46, 33, 11, 1, 1, 28, 61, 79, 73, 46, 13, 1, 1, 36, 85, 121, 129, 106, 61, 15, 1, 1, 45, 113, 172, 201, 191, 145, 78, 17, 1, 1, 55, 145, 232, 289, 301, 265, 190, 97, 19, 1
Offset: 0

Views

Author

Peter Luschny, Mar 21 2023

Keywords

Comments

A combination of a multiset M is an unordered selection of k objects of M, where every object can appear at most as many times as it appears in M.
A(n, k) = Cardinality(Union_{j=0..k} Combination(MultiSet(1^[j*n], 0^[(k-j)*n]))), where MultiSet(r^[s], u^[v]) denotes a set that contains the element r with multiplicity s and the element u with multiplicity v; thus the multisets under consideration have n*k elements. Since the base set is {1, 0} the elements can be represented as binary strings. Applying the combination operator to the multisets results in a set of binary strings where '0' resp. '1' can appear at most j*n resp. (k-j)*n times. 'At most' means that they do not have to appear; in other words, the resulting set always includes the empty string ''.
In contrast to the procedure in A361045 we consider here the cardinality of the set union and not the sum of the individual cardinalities. If you want to exclude the empty string, you will find the sequences listed in A361521. The same construction with multiset permutations instead of multiset combinations results in A361043.
A different view can be taken if one considers the hypergeometric representation, hypergeom([-k, -m], [1], n). This is a family of arrays that includes the 'rascal' triangle: the all 1's array A000012 (m = 0), the rascal array A077028 (m = 1), this array (m = 2), and A361731 (m = 3).

Examples

			Array A(n, k) starts:
   [0] 1,  1,   1,    1,   1,   1,   1,    1, ...  A000012
   [1] 1,  3,   6,   10,  15,  21,  28,   36, ...  A000217
   [2] 1,  5,  13,   25,  41,  61,  85,  113, ...  A001844
   [3] 1,  7,  22,   46,  79, 121, 172,  232, ...  A038764
   [4] 1,  9,  33,   73, 129, 201, 289,  393, ...  A081585
   [5] 1, 11,  46,  106, 191, 301, 436,  596, ...  A081587
   [6] 1, 13,  61,  145, 265, 421, 613,  841, ...  A081589
   [7] 1, 15,  78,  190, 351, 561, 820, 1128, ...  A081591
   000012  | A028872 | A239325 |
       A005408    A100536   A069133
.
Triangle T(n, k) starts:
   [0] 1;
   [1] 1,  1;
   [2] 1,  3,   1;
   [3] 1,  6,   5,   1;
   [4] 1, 10,  13,   7,   1;
   [5] 1, 15,  25,  22,   9,   1;
   [6] 1, 21,  41,  46,  33,  11,   1;
   [7] 1, 28,  61,  79,  73,  46,  13,  1;
   [8] 1, 36,  85, 121, 129, 106,  61, 15,  1;
   [9] 1, 45, 113, 172, 201, 191, 145, 78, 17, 1.
.
Row 4 of the triangle:
A(0, 4) =  1 = card('').
A(1, 3) = 10 = card('', 0, 00, 000, 1, 10, 100, 11, 110, 111).
A(2, 2) = 13 = card('', 0, 00, 000, 0000, 1, 10, 100, 11, 110, 1100, 111, 1111).
A(3, 1) =  7 = card('', 0, 00, 000, 1, 11, 111).
A(4, 0) =  1 = card('').
		

Crossrefs

Cf. A239592 (main diagonal), A239331 (transposed array).

Programs

  • Maple
    A := (n, k) -> 1 + n*k*(4 + n*(k - 1))/2:
    for n from 0 to 7 do seq(A(n, k), k = 0..7) od;
    # Alternative:
    ogf := n -> (1 + (n - 1)*x)^2 / (1 - x)^3:
    ser := n -> series(ogf(n), x, 12):
    row := n -> seq(coeff(ser(n), x, k), k = 0..9):
    seq(print(row(n)), n = 0..7);
  • SageMath
    def A(m: int, steps: int) -> int:
        if m == 0: return 1
        size = m * steps
        cset = set()
        for a in range(0, size + 1, m):
            S = [str(int(i < a)) for i in range(size)]
            C = Combinations(S)
            cset.update("".join(i for i in c) for c in C)
        return len(cset)
    def ARow(n: int, size: int) -> list[int]:
        return [A(n, k) for k in range(size + 1)]
    for n in range(8): print(ARow(n, 7))

Formula

A(n, k) = 1 + n*k*(4 + n*(k - 1))/2.
T(n, k) = 1 + k*(n - k)*(4 + k*(n - k - 1))/2.
A(n, k) = [x^k] (1 + (n - 1)*x)^2 / (1 - x)^3.
A(n, k) = hypergeom([-k, -2], [1], n).
A(n, k) = A361521(n, k) + 1.

A157912 a(n) = 64*n^2 + 16.

Original entry on oeis.org

80, 272, 592, 1040, 1616, 2320, 3152, 4112, 5200, 6416, 7760, 9232, 10832, 12560, 14416, 16400, 18512, 20752, 23120, 25616, 28240, 30992, 33872, 36880, 40016, 43280, 46672, 50192, 53840, 57616, 61520, 65552, 69712, 74000, 78416, 82960, 87632, 92432, 97360, 102416
Offset: 1

Views

Author

Vincenzo Librandi, Mar 09 2009

Keywords

Comments

The identity (8*n^2 + 1)^2 - (64*n^2 + 16)*n^2 = 1 can be written as A081585(n)^2 - a(n)*n^2 = 1. - Vincenzo Librandi, Feb 09 2012

Crossrefs

Programs

Formula

From Vincenzo Librandi, Feb 09 2012: (Start)
G.f.: x*(80+32*x+16*x^2)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
From Amiram Eldar, Mar 07 2023: (Start)
Sum_{n>=1} 1/a(n) = (coth(Pi/2)*Pi/2 - 1)/32.
Sum_{n>=1} (-1)^(n+1)/a(n) = (1 - cosech(Pi/2)*Pi/2)/32. (End)
From Elmo R. Oliveira, Jan 16 2025: (Start)
E.g.f.: 16*(exp(x)*(4*x^2 + 4*x + 1) - 1).
a(n) = 16*A053755(n). (End)

A158444 a(n) = 16*n^2 + 4.

Original entry on oeis.org

20, 68, 148, 260, 404, 580, 788, 1028, 1300, 1604, 1940, 2308, 2708, 3140, 3604, 4100, 4628, 5188, 5780, 6404, 7060, 7748, 8468, 9220, 10004, 10820, 11668, 12548, 13460, 14404, 15380, 16388, 17428, 18500, 19604, 20740, 21908, 23108, 24340, 25604, 26900, 28228
Offset: 1

Views

Author

Vincenzo Librandi, Mar 19 2009

Keywords

Comments

The identity (8*n^2 + 1)^2 - (16*n^2 + 4)*(2*n)^2 = 1 can be written as A081585(n)^2 - a(n)*A005843(n)^2 = 1. [rewritten by Bruno Berselli, Sep 06 2011]
Sequence found by reading the line from 20, in the direction 20, 68, ... in the square spiral whose vertices are the generalized decagonal numbers A074377. - Omar E. Pol, Nov 02 2012

Crossrefs

Programs

Formula

From Bruno Berselli, Sep 06 2011: (Start)
G.f.: 4*x*(5 + 2*x + x^2)/(1-x)^3.
a(n) = 4*A053755(n). (End)
From Amiram Eldar, Mar 05 2023: (Start)
Sum_{n>=1} 1/a(n) = (coth(Pi/2)*Pi/2 - 1)/8.
Sum_{n>=1} (-1)^(n+1)/a(n) = (1 - cosech(Pi/2)*Pi/2)/8. (End)
E.g.f.: 4*(exp(x)*(4*x^2 + 4*x + 1) - 1). - Elmo R. Oliveira, Jan 27 2025
Showing 1-10 of 13 results. Next