A188135 a(n) = 8*n^2 + 2*n + 1.
1, 11, 37, 79, 137, 211, 301, 407, 529, 667, 821, 991, 1177, 1379, 1597, 1831, 2081, 2347, 2629, 2927, 3241, 3571, 3917, 4279, 4657, 5051, 5461, 5887, 6329, 6787, 7261, 7751, 8257, 8779, 9317, 9871, 10441, 11027, 11629, 12247, 12881, 13531, 14197, 14879, 15577, 16291, 17021, 17767
Offset: 0
Links
- Kelvin Voskuijl, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
[1 + 2*n + 8*n^2: n in [0..50]]; // Vincenzo Librandi, Mar 30 2011
-
PARI
a(n)=8*n^2+2*n+1 \\ Charles R Greathouse IV, Oct 07 2015
Formula
Second differences: a(n) - 2*a(n-1) + a(n-2) = 16.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
From R. J. Mathar, Apr 06 2011: (Start)
G.f.: -(1+x)*(7*x+1)/(x-1)^3.
a(n) = A084849(2*n). (End)
E.g.f.: exp(x)*(1 + 10*x + 8*x^2). - Elmo R. Oliveira, Oct 19 2024
Extensions
a(41)-a(47) from Elmo R. Oliveira, Oct 19 2024
Comments