cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A081585 Third row of Pascal-(1,3,1) array A081578.

Original entry on oeis.org

1, 9, 33, 73, 129, 201, 289, 393, 513, 649, 801, 969, 1153, 1353, 1569, 1801, 2049, 2313, 2593, 2889, 3201, 3529, 3873, 4233, 4609, 5001, 5409, 5833, 6273, 6729, 7201, 7689, 8193, 8713, 9249, 9801, 10369, 10953, 11553, 12169, 12801, 13449, 14113
Offset: 0

Views

Author

Paul Barry, Mar 23 2003

Keywords

Comments

The identity (8*n^2 +1)^2 - (64*n^2 +16)*n^2 = 1 can be written as a(n)^2 -A157912(n)*n^2 = 1 for n>0. - Vincenzo Librandi, Feb 09 2012

Crossrefs

Programs

  • Magma
    I:=[1,9,33]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 09 2012
    
  • Maple
    seq(1+8*n^2, n=0..100); # Robert Israel, Sep 04 2015
  • Mathematica
    LinearRecurrence[{3,-3,1}, {1,9,33}, 40] (* Vincenzo Librandi, Feb 09 2012 *)
  • PARI
    for(n=0, 50, print1(8*n^2+1", ")); \\ Vincenzo Librandi, Feb 09 2012
    
  • Sage
    [8*n^2 +1 for n in (0..40)] # G. C. Greubel, May 26 2021

Formula

a(n) = 8*n^2 + 1.
G.f.: (1+3*x)^2/(1-x)^3.
a(n) = a(n-1) + 16*n - 8 with a(0)=1. - Vincenzo Librandi, Aug 08 2010
a(n) = sqrt(8*(A000217(2*n-1)^2 +A000217(2*n)^2) +1). - J. M. Bergot, Sep 04 2015
From Amiram Eldar, Jul 15 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + (Pi/sqrt(8))*coth(Pi/sqrt(8)))/2.
Sum_{n>=0} (-1)^n/a(n) = (1 + (Pi/sqrt(8))*csch(Pi/sqrt(8)))/2. (End)
From Amiram Eldar, Feb 05 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = sqrt(2)*csch(Pi/sqrt(8))*sinh(Pi/2).
Product_{n>=1} (1 - 1/a(n)) = (Pi/sqrt(8))*csch(Pi/sqrt(8)). (End)
E.g.f.: (1 +8*x +8*x^2)*exp(x). - G. C. Greubel, May 26 2021

A081586 Fourth row of Pascal-(1,3,1) array A081578.

Original entry on oeis.org

1, 13, 73, 245, 593, 1181, 2073, 3333, 5025, 7213, 9961, 13333, 17393, 22205, 27833, 34341, 41793, 50253, 59785, 70453, 82321, 95453, 109913, 125765, 143073, 161901, 182313, 204373, 228145, 253693, 281081, 310373, 341633, 374925, 410313, 447861
Offset: 0

Views

Author

Paul Barry, Mar 23 2003

Keywords

Crossrefs

Programs

  • Magma
    [(3+28*n-24*n^2+32*n^3)/3: n in [0..40]]; // Vincenzo Librandi, Nov 16 2011
    
  • Mathematica
    Table[(3+28n-24n^2+32n^3)/3,{n,0,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{1,13,73,245},40] (* Harvey P. Dale, Nov 06 2011 *)
  • Sage
    [(3+28*n-24*n^2+32*n^3)/3 for n in (0..40)] # G. C. Greubel, May 26 2021

Formula

From Harvey P. Dale, Nov 06 2011: (Start)
a(n) = (3 + 28*n - 24*n^2 + 32*n^3)/3.
G.f.: (1+3*x)^3/(1-x)^4.
a(0)=1, a(1)=13, a(2)=73, a(3)=245, a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). (End)
E.g.f.: (1/3)*(3 + 36*x + 72*x^2 + 32*x^3)*exp(x). - G. C. Greubel, May 26 2021

A081577 Pascal-(1,2,1) array read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 7, 7, 1, 1, 10, 22, 10, 1, 1, 13, 46, 46, 13, 1, 1, 16, 79, 136, 79, 16, 1, 1, 19, 121, 307, 307, 121, 19, 1, 1, 22, 172, 586, 886, 586, 172, 22, 1, 1, 25, 232, 1000, 2086, 2086, 1000, 232, 25, 1, 1, 28, 301, 1576, 4258, 5944, 4258, 1576, 301, 28, 1
Offset: 0

Views

Author

Paul Barry, Mar 23 2003

Keywords

Comments

One of a family of Pascal-like arrays. A007318 is equivalent to the (1,0,1)-array. A008288 is equivalent to the (1,1,1)-array. Rows include A016777, A038764, A081583, A081584. Coefficients of the row polynomials in the Newton basis are given by A013610.
As a number triangle, this is the Riordan array (1/(1-x), x(1+2x)/(1-x)). It has row sums A002605 and diagonal sums A077947. - Paul Barry, Jan 24 2005
All entries are == 1 mod 3. - Roger L. Bagula, Oct 04 2008
Row sums are A002605. - Roger L. Bagula, Dec 09 2008
As a number triangle T, T(2n,n)=A069835(n). - Philippe Deléham, Jan 10 2014

Examples

			Square array begins as:
  1,  1,  1,   1,   1, ... A000012;
  1,  4,  7,  10,  13, ... A016777;
  1,  7, 22,  46,  79, ... A038764;
  1, 10, 46, 136, 307, ... A081583;
  1, 13, 79, 307, 886, ... A081584;
From _Roger L. Bagula_, Dec 09 2008: (Start)
As a triangle this begins:
  1;
  1,  1;
  1,  4,   1;
  1,  7,   7,    1;
  1, 10,  22,   10,    1;
  1, 13,  46,   46,   13,    1;
  1, 16,  79,  136,   79,   16,    1;
  1, 19, 121,  307,  307,  121,   19,    1;
  1, 22, 172,  586,  886,  586,  172,   22,   1;
  1, 25, 232, 1000, 2086, 2086, 1000,  232,  25,  1;
  1, 28, 301, 1576, 4258, 5944, 4258, 1576, 301, 28, 1; (End)
		

Crossrefs

Cf. Pascal-(1,a,1) array: A123562 (a=-3), A098593 (=-2), A000012 (a=-1), A007318 (a=0), A008288 (a=1), A081577(a=2), A081578 (a=3), A081579 (a=4), A081580 (a=5), A081581 (a=6), A081582 (a=7), A143683(a=8). [From Roger L. Bagula, Dec 09 2008], Philippe Deléham, Jan 10 2014, Mar 16 2014.

Programs

  • Haskell
    a081577 n k = a081577_tabl !! n !! k
    a081577_row n = a081577_tabl !! n
    a081577_tabl = map fst $ iterate
        (\(us, vs) -> (vs, zipWith (+) (map (* 2) ([0] ++ us ++ [0])) $
                           zipWith (+) ([0] ++ vs) (vs ++ [0]))) ([1], [1, 1])
    -- Reinhard Zumkeller, Mar 16 2014
    
  • Magma
    A081577:= func< n,k | (&+[Binomial(k,j)*Binomial(n-j,k)*2^j: j in [0..n-k]]) >;
    [A081577(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, May 25 2021
    
  • Mathematica
    a[0]={1}; a[1]={1, 1}; a[n_]:= a[n]= 2*Join[{0}, a[n-2], {0}] + Join[{0}, a[n-1]] + Join[a[n-1], {0}]; Table[a[n], {n,0,10}]//Flatten (* Roger L. Bagula, Dec 09 2008 *)
    Table[Hypergeometric2F1[-k, k-n, 1, 3], {n,0,10}, {k,0,n}]//Flatten (* Jean-François Alcover, May 24 2013 *)
  • Sage
    flatten([[hypergeometric([-k, k-n], [1], 3).simplify() for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 25 2021

Formula

Square array T(n, k) defined by T(n, 0) = T(0, k) = 1, T(n, k) = T(n, k-1) + 2*T(n-1, k-1) + T(n-1, k).
Rows are the expansions of (1+2*x)^k/(1-x)^(k+1).
G.f.: 1/(1-x-y-2*x*y). - Ralf Stephan, Apr 28 2004
T(n,k) = Sum_{j=0..n} binomial(k,j-k)*binomial(n+k-j,k)*2^(j-k). - Paul Barry, Oct 23 2006
a(n) = 2*{0, a(n-2), 0} + {0, a(n-1)} + {a(n-1), 0}. - Roger L. Bagula, Dec 09 2008
T(n, k) = Hypergeometric2F1([-k, k-n], [1], 3). - Jean-François Alcover, May 24 2013
The e.g.f. for the n-th subdiagonal, n = 0,1,2,..., equals exp(x)*P(n,x), where P(n,x) is the polynomial Sum_{k = 0..n} binomial(n,k)*(3*x)^k/k!. For example, the e.g.f. for the second subdiagonal is exp(x)*(1 + 6*x + 9*x^2/2) = 1 + 7*x + 22*x^2/2! + 46*x^3/3! + 79*x^4/4! + 121*x^5/5! + .... - Peter Bala, Mar 05 2017
Sum_{k=0..n} T(n,k) = A002605(n). - G. C. Greubel, May 25 2021

A098593 A triangle of Krawtchouk coefficients.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, -1, -1, 1, 1, -2, -2, -2, 1, 1, -3, -2, -2, -3, 1, 1, -4, -1, 0, -1, -4, 1, 1, -5, 1, 3, 3, 1, -5, 1, 1, -6, 4, 6, 6, 6, 4, -6, 1, 1, -7, 8, 8, 6, 6, 8, 8, -7, 1, 1, -8, 13, 8, 2, 0, 2, 8, 13, -8, 1, 1, -9, 19, 5, -6, -10, -10, -6, 5, 19, -9, 1, 1, -10, 26, -2, -17, -20, -20, -20, -17, -2, 26, -10, 1, 1, -11, 34, -14, -29, -25
Offset: 0

Views

Author

Paul Barry, Sep 17 2004

Keywords

Comments

Row sums are A009545(n+1), with e.g.f. exp(x)(cos(x)+sin(x)). Diagonal sums are A077948.
The rows are the diagonals of the Krawtchouk matrices. Coincides with the Riordan array (1/(1-x),(1-2x)/(1-x)). - Paul Barry, Sep 24 2004
Corresponds to Pascal-(1,-2,1) array, read by antidiagonals. The Pascal-(1,-2,1) array has n-th row generated by (1-2x)^n/(1-x)^(n+1). - Paul Barry, Sep 24 2004
A modified version (different signs) of this triangle is given by T(n,k) = Sum_{j=0..n} C(n-k,j)*C(k,j)*cos(Pi*(k-j)). - Paul Barry, Jun 14 2007

Examples

			Rows begin {1}, {1,1}, {1,0,1}, {1,-1,-1,1}, {1,-2,-2,-2,1}, ...
From _Paul Barry_, Oct 05 2010: (Start)
Triangle begins
  1,
  1,  1,
  1,  0,  1,
  1, -1, -1,  1,
  1, -2, -2, -2,  1,
  1, -3, -2, -2, -3,  1,
  1, -4, -1,  0, -1, -4,  1,
  1, -5,  1,  3,  3,  1, -5,  1,
  1, -6,  4,  6,  6,  6,  4, -6,  1,
  1, -7,  8,  8,  6,  6,  8,  8, -7,  1,
  1, -8, 13,  8,  2,  0,  2,  8, 13, -8,  1
Production matrix (related to large Schroeder numbers A006318) begins
  1,     1,
  0,    -1,     1,
  0,    -2,    -1,    1,
  0,    -6,    -2,   -1,   1,
  0,   -22,    -6,   -2,  -1,   1,
  0,   -90,   -22,   -6,  -2,  -1,  1,
  0,  -394,   -90,  -22,  -6,  -2, -1,  1,
  0, -1806,  -394,  -90, -22,  -6, -2, -1,  1,
  0, -8558, -1806, -394, -90, -22, -6, -2, -1, 1
Production matrix of inverse is
    -1,   1,
    -2,   1,  1,
    -4,   2,  1,  1,
    -8,   4,  2,  1,  1,
   -16,   8,  4,  2,  1, 1,
   -32,  16,  8,  4,  2, 1, 1,
   -64,  32, 16,  8,  4, 2, 1, 1,
  -128,  64, 32, 16,  8, 4, 2, 1, 1,
  -256, 128, 64, 32, 16, 8, 4, 2, 1, 1 (End)
		

References

  • P. Feinsilver and J. Kocik, Krawtchouk matrices from classical and quantum walks, Contemporary Mathematics, 287 2001, pp. 83-96.

Crossrefs

Cf. Pascal (1,m,1) array: A123562 (m = -3), A000012 (m = -1), A007318 (m = 0), A008288 (m = 1), A081577 (m = 2), A081578 (m = 3), A081579 (m = 4), A081580 (m = 5), A081581 (m = 6), A081582 (m = 7), A143683 (m = 8).

Programs

  • Mathematica
    T[n_, k_] := Sum[Binomial[n - k, k - j]*Binomial[k, j]*(-1)^(k - j), {j, 0, n}]; Table[T[n, k], {n, 0, 49}, {k, 0, n}] // Flatten (* G. C. Greubel, Oct 15 2017 *)
  • PARI
    for(n=0,10, for(k=0,n, print1(sum(i=0,k, binomial(n-k, k-i) *binomial(k, i)*(-1)^(k-i)), ", "))) \\ G. C. Greubel, Oct 15 2017

Formula

T(n, k) = Sum_{i=0..k} binomial(n-k, k-i)*binomial(k, i)*(-1)^(k-i), k<=n.
T(n, k) = T(n-1, k) + T(n-1, k-1) - 2*T(n-2, k-1) (n>0). - Paul Barry, Sep 24 2004
T(n, k) = [k<=n]*Hypergeometric2F1(-k,k-n;1;-1). - Paul Barry, Jan 24 2011
E.g.f. for the n-th subdiagonal: exp(x)*P(n,x), where P(n,x) is the polynomial Sum_{k = 0..n} (-1)^k*binomial(n,k)* x^k/k!. For example, the e.g.f. for the second subdiagonal is exp(x)*(1 - 2*x + x^2/2) = 1 - x - 2*x^2/2! - 2*x^3/3! - x^4/4! + x^5/5! + .... - Peter Bala, Mar 05 2017

A081582 Pascal-(1,7,1) array.

Original entry on oeis.org

1, 1, 1, 1, 9, 1, 1, 17, 17, 1, 1, 25, 97, 25, 1, 1, 33, 241, 241, 33, 1, 1, 41, 449, 1161, 449, 41, 1, 1, 49, 721, 3297, 3297, 721, 49, 1, 1, 57, 1057, 7161, 14721, 7161, 1057, 57, 1, 1, 65, 1457, 13265, 44961, 44961, 13265, 1457, 65, 1, 1, 73, 1921, 22121, 108353, 192969, 108353, 22121, 1921, 73, 1
Offset: 0

Views

Author

Paul Barry, Mar 23 2003

Keywords

Comments

One of a family of Pascal-like arrays. A007318 is equivalent to the (1,0,1)-array. A008288 is equivalent to the (1,1,1)-array. Rows include A017077, A081593, A081594. Coefficients of the row polynomials in the Newton basis are given by A013614.

Examples

			Rows begin
  1,  1,   1,    1,     1, ... A000012;
  1,  9,  17,   25,    33, ... A017077;
  1, 17,  97,  241,   449, ... A081593;
  1, 25, 241, 1161,  3297, ...
  1, 33, 449, 3297, 14721, ...
Triangle begins:
  1;
  1,  1;
  1,  9,    1;
  1, 17,   17,    1;
  1, 25,   97,   25,     1;
  1, 33,  241,  241,    33,    1;
  1, 41,  449, 1161,   449,   41,    1;
  1, 49,  721, 3297,  3297,  721,   49,  1;
  1, 57, 1057, 7161, 14721, 7161, 1057, 57, 1;
		

Crossrefs

Cf. Pascal (1,m,1) array: A123562 (m = -3), A098593 (m = -2), A000012 (m = -1), A007318 (m = 0), A008288 (m = 1), A081577 (m = 2), A081578 (m = 3), A081579 (m = 4), A081580 (m = 5), A081581 (m = 6), A143683 (m = 8).

Programs

  • Magma
    A081582:= func< n,k,q | (&+[Binomial(k, j)*Binomial(n-j, k)*q^j: j in [0..n-k]]) >;
    [A081582(n,k,7): k in [0..n], n in [0..12]]; // G. C. Greubel, May 26 2021
    
  • Mathematica
    Table[ Hypergeometric2F1[-k, k-n, 1, 8], {n,0,10}, {k,0,n}]//Flatten (* Jean-François Alcover, May 24 2013 *)
  • Sage
    flatten([[hypergeometric([-k, k-n], [1], 8).simplify() for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 26 2021

Formula

T(n,k) = Sum_{j = 0..n-k} binomial(n-k,j)*binomial(k,j)*8^j.
Riordan array (1/(1 - x), x*(1 + 7*x)/(1 - x)).
Square array T(n, k) defined by T(n, 0) = T(0, k)=1, T(n, k) = T(n, k-1) + 7*T(n-1, k-1) + T(n-1, k).
Rows are the expansions of (1 + 7*x)^k/(1 - x)^(k+1).
T(n, k) = Hypergeometric2F1([-k, k-n], [1], 8). - Jean-François Alcover, May 24 2013
E.g.f. for the n-th subdiagonal, n = 0,1,2,..., equals exp(x)*P(n,x), where P(n,x) is the polynomial Sum_{k = 0..n} binomial(n,k)*(8*x)^k/k!. For example, the e.g.f. for the second subdiagonal is exp(x)*(1 + 16*x + 64*x^2/2) = 1 + 17*x + 97*x^2/2! + 241*x^3/3! + 449*x^4/4! + 721*x^5/5! + .... - Peter Bala, Mar 05 2017
Sum_{k=0..n} T(n, k) = A015519(n+1). - G. C. Greubel, May 26 2021

A081579 Pascal-(1,4,1) array.

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 11, 11, 1, 1, 16, 46, 16, 1, 1, 21, 106, 106, 21, 1, 1, 26, 191, 396, 191, 26, 1, 1, 31, 301, 1011, 1011, 301, 31, 1, 1, 36, 436, 2076, 3606, 2076, 436, 36, 1, 1, 41, 596, 3716, 9726, 9726, 3716, 596, 41, 1, 1, 46, 781, 6056, 21746, 33876, 21746, 6056, 781, 46, 1
Offset: 0

Views

Author

Paul Barry, Mar 23 2003

Keywords

Comments

One of a family of Pascal-like arrays. A007318 is equivalent to the (1,0,1)-array. A008288 is equivalent to the (1,1,1)-array. Rows include A016861, A081587, A081588. Coefficients of the row polynomials in the Newton basis are given by A013612.

Examples

			Square array begins as:
  1,  1,   1,    1,    1, ... A000012;
  1,  6,  11,   16,   21, ... A016861;
  1, 11,  46,  106,  191, ... A081587;
  1, 16, 106,  396, 1011, ... A081588;
  1, 21, 191, 1011, 3606, ...
As triangle this begins:
  1;
  1,  1;
  1,  6,   1;
  1, 11,  11,    1;
  1, 16,  46,   16,     1;
  1, 21, 106,  106,    21,     1;
  1, 26, 191,  396,   191,    26,     1;
  1, 31, 301, 1011,  1011,   301,    31,    1;
  1, 36, 436, 2076,  3606,  2076,   436,   36,   1;
  1, 41, 596, 3716,  9726,  9726,  3716,  596,  41,  1;
  1, 46, 781, 6056, 21746, 33876, 21746, 6056, 781, 46, 1; - _Philippe Deléham_, Mar 15 2014
		

Crossrefs

Cf. Pascal (1,m,1) array: A123562 (m = -3), A098593 (m = -2), A000012 (m = -1), A007318 (m = 0), A008288 (m = 1), A081577 (m = 2), A081578 (m = 3), A081580 (m = 5), A081581 (m = 6), A081582 (m = 7), A143683 (m = 8).

Programs

  • Magma
    A081579:= func< n,k,q | (&+[Binomial(k, j)*Binomial(n-j, k)*q^j: j in [0..n-k]]) >;
    [A081579(n,k,4): k in [0..n], n in [0..12]]; // G. C. Greubel, May 26 2021
    
  • Mathematica
    Table[Hypergeometric2F1[-k, k-n, 1, 5], {n,0,12}, {k,0,n}]//Flatten (* Jean-François Alcover, May 24 2013 *)
  • Sage
    flatten([[hypergeometric([-k, k-n], [1], 5).simplify() for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 26 2021

Formula

Square array T(n, k) defined by T(n, 0) = T(0, k) = 1, T(n, k) = T(n, k-1) + 4*T(n-1, k-1) + T(n-1, k).
Rows are the expansions of (1+4*x)^k/(1-x)^(k+1).
From Philippe Deléham, Mar 15 2014: (Start)
Riordan array (1/(1-x), x*(1+4*x)/(1-x)).
Sum_{k=0..n} T(n, k) = A063727(n). (End)
E.g.f. for the n-th subdiagonal of the triangle, n = 0,1,2,..., equals exp(x)*P(n,x), where P(n,x) is the polynomial Sum_{k = 0..n} binomial(n,k)*(5*x)^k/k!. For example, the e.g.f. for the second subdiagonal is exp(x)*(1 + 10*x + 25*x^2/2) = 1 + 11*x + 46*x^2/2! + 106*x^3/3! + 191*x^4/4! + 301*x^5/5! + .... - Peter Bala, Mar 05 2017
From G. C. Greubel, May 26 2021: (Start)
T(n, k, m) = Hypergeometric2F1([-k, k-n], [1], m+1), for m = 4.
T(n, k, m) = Sum_{j=0..n-k} binomial(k,j)*binomial(n-j,k)*m^j, for m = 4. (End)

A081580 Pascal-(1,5,1) array.

Original entry on oeis.org

1, 1, 1, 1, 7, 1, 1, 13, 13, 1, 1, 19, 61, 19, 1, 1, 25, 145, 145, 25, 1, 1, 31, 265, 595, 265, 31, 1, 1, 37, 421, 1585, 1585, 421, 37, 1, 1, 43, 613, 3331, 6145, 3331, 613, 43, 1, 1, 49, 841, 6049, 17401, 17401, 6049, 841, 49, 1, 1, 55, 1105, 9955, 40105, 65527, 40105, 9955, 1105, 55, 1
Offset: 0

Views

Author

Paul Barry, Mar 23 2003

Keywords

Comments

One of a family of Pascal-like arrays. A007318 is equivalent to the (1,0,1)-array. A008288 is equivalent to the (1,1,1)-array. Rows include A016921, A081589, A081590. Coefficients of the row polynomials in the Newton basis are given by A013613.

Examples

			Square array begins as:
  1,  1,   1,    1,    1, ... A000012;
  1,  7,  13,   19,   25, ... A016921;
  1, 13,  61,  145,  265, ... A081589;
  1, 19, 145,  595, 1585, ... A081590;
  1, 25, 265, 1585, 6145, ...
The triangle begins as:
  1;
  1,  1;
  1,  7,    1;
  1, 13,   13,    1;
  1, 19,   61,   19,     1;
  1, 25,  145,  145,    25,     1;
  1, 31,  265,  595,   265,    31,     1;
  1, 37,  421, 1585,  1585,   421,    37,    1;
  1, 43,  613, 3331,  6145,  3331,   613,   43,    1;
  1, 49,  841, 6049, 17401, 17401,  6049,  841,   49,  1;
  1, 55, 1105, 9955, 40105, 65527, 40105, 9955, 1105, 55, 1; - _Philippe Deléham_, Mar 15 2014
		

Crossrefs

Cf. Pascal (1,m,1) array: A123562 (m = -3), A098593 (m = -2), A000012 (m = -1), A007318 (m = 0), A008288 (m = 1), A081577 (m = 2), A081578 (m = 3), A081579 (m = 4), A081581 (m = 6), A081582 (m = 7), A143683 (m = 8).

Programs

  • Magma
    A081580:= func< n,k,q | (&+[Binomial(k, j)*Binomial(n-j, k)*q^j: j in [0..n-k]]) >;
    [A081580(n,k,5): k in [0..n], n in [0..12]]; // G. C. Greubel, May 26 2021
    
  • Mathematica
    Table[Hypergeometric2F1[-k, k-n, 1, 6], {n,0,10}, {k,0,n}]//Flatten (* Jean-François Alcover, May 24 2013 *)
  • Sage
    flatten([[hypergeometric([-k, k-n], [1], 6).simplify() for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 26 2021

Formula

Square array T(n, k) defined by T(n, 0) = T(0, k) = 1, T(n, k) = T(n, k-1) + 5*T(n-1, k-1) + T(n-1, k).
Rows are the expansions of (1+5*x)^k/(1-x)^(k+1).
From Paul Barry, Aug 28 2008: (Start)
Number triangle T(n,k) = Sum_{j=0..n-k} binomial(n-k,j)*binomial(k,j)*5^j.
Riordan array (1/(1-x), x*(1+5*x)/(1-x)). (End)
T(n, k) = Hypergeometric2F1([-k, k-n], [1], 6). - Jean-François Alcover, May 24 2013
E.g.f. for the n-th subdiagonal, n = 0,1,2,..., equals exp(x)*P(n,x), where P(n,x) is the polynomial Sum_{k = 0..n} binomial(n,k)*(6*x)^k/k!. For example, the e.g.f. for the second subdiagonal is exp(x)*(1 + 12*x + 36*x^2/2) = 1 + 13*x + 61*x^2/2! + 145*x^3/3! + 265*x^4/4! + 421*x^5/5! + .... - Peter Bala, Mar 05 2017
Sum_{k=0..n} T(n, k, 3) = A002532(n+1). - G. C. Greubel, May 26 2021

A081581 Pascal-(1,6,1) array.

Original entry on oeis.org

1, 1, 1, 1, 8, 1, 1, 15, 15, 1, 1, 22, 78, 22, 1, 1, 29, 190, 190, 29, 1, 1, 36, 351, 848, 351, 36, 1, 1, 43, 561, 2339, 2339, 561, 43, 1, 1, 50, 820, 5006, 9766, 5006, 820, 50, 1, 1, 57, 1128, 9192, 28806, 28806, 9192, 1128, 57, 1, 1, 64, 1485, 15240, 68034, 116208, 68034, 15240, 1485, 64, 1
Offset: 0

Views

Author

Paul Barry, Mar 23 2003

Keywords

Comments

One of a family of Pascal-like arrays. A007318 is equivalent to the (1,0,1)-array. A008288 is equivalent to the (1,1,1)-array. Rows include A016993, A081591, A081592. Coefficients of the row polynomials in the Newton basis are given by A013614.

Examples

			Rows start as:
  1,  1,   1,    1,    1, ... A000012;
  1,  8,  15,   22,   29, ... A016993;
  1, 15,  78,  190,  351, ... A081591;
  1, 22, 190,  848, 2339, ...
  1, 29, 351, 2339, 9766, ...
The triangle starts as:
  1;
  1,  1;
  1,  8,   1;
  1, 15,  15,    1;
  1, 22,  78,   22,    1;
  1, 29, 190,  190,   29,   1;
  1, 36, 351,  848,  351,  36,  1;
  1, 43, 561, 2339, 2339, 561, 43, 1;
		

Crossrefs

Cf. Pascal (1,m,1) array: A123562 (m = -3), A098593 (m = -2), A000012 (m = -1), A007318 (m = 0), A008288 (m = 1), A081577 (m = 2), A081578 (m = 3), A081579 (m = 4), A081580 (m = 5), A081582 (m = 7), A143683 (m = 8).

Programs

  • Magma
    A081581:= func< n,k,q | (&+[Binomial(k, j)*Binomial(n-j, k)*q^j: j in [0..n-k]]) >;
    [A081581(n,k,6): k in [0..n], n in [0..12]]; // G. C. Greubel, May 26 2021
    
  • Mathematica
    Table[Hypergeometric2F1[-k, k-n, 1, 7], {n,0,10}, {k,0,n}]//Flatten (* Jean-François Alcover, May 24 2013 *)
  • PARI
    t(n, k) = sum(j=0, n-k, binomial(n-k, j)*binomial(k, j)*7^j) \\ Michel Marcus, May 24 2013
    
  • Sage
    flatten([[hypergeometric([-k, k-n], [1], 7).simplify() for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 26 2021

Formula

Square array T(n, k) defined by T(n, 0) = T(0, k) = 1, T(n, k) = T(n, k-1) + 6*T(n-1, k-1) + T(n-1, k).
Rows are the expansions of (1+6*x)^k/(1-x)^(k+1).
T(n, k) = Hypergeometric2F1([-k, k-n], [1], 7). - Jean-François Alcover, May 24 2013
E.g.f. for the n-th subdiagonal, n = 0,1,2,..., equals exp(x)*P(n,x), where P(n,x) is the polynomial Sum_{k = 0..n} binomial(n,k)*(7*x)^k/k!. For example, the e.g.f. for the second subdiagonal is exp(x)*(1 + 14*x + 49*x^2/2) = 1 + 15*x + 78*x^2/2! + 190*x^3/3! + 351*x^4/4! + 561*x^5/5! + .... - Peter Bala, Mar 05 2017
From G. C. Greubel, May 26 2021: (Start)
T(n, k, m) = Sum_{j=0..n-k} binomial(k,j)*binomial(n-j,k)*m^j, for m = 6.
Sum_{k=0..n} T(n, k, 6) = A083099(n+1). (End)

A123562 Pascal-(1,-3,1) array, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, -1, 1, 1, -3, -3, 1, 1, -5, -3, -5, 1, 1, -7, 1, 1, -7, 1, 1, -9, 9, 11, 9, -9, 1, 1, -11, 21, 17, 17, 21, -11, 1, 1, -13, 37, 11, 1, 11, 37, -13, 1, 1, -15, 57, -15, -39, -39, -15, 57, -15, 1, 1, -17, 81, -69, -87, -81, -87, -69, 81, -17, 1
Offset: 0

Views

Author

Philippe Deléham, Nov 12 2006

Keywords

Comments

Riordan array (1/(1-x), x*(1-3x)/(1-x)).

Examples

			Triangle begins:
  1;
  1,   1;
  1,  -1,   1;
  1,  -3,  -3,   1;
  1,  -5,  -3,  -5,   1;
  1,  -7,   1,   1,  -7,   1;
  1,  -9,   9,  11,   9,  -9,  1;
  1, -11,  21,  17,  17,  21, -11,   1;
  1, -13,  37,  11,   1,  11,  37, -13,   1;
		

Crossrefs

Cf. Pascal (1,m,1) array: A098593 (m = -2), A000012 (m = -1), A007318 (m = 0), A008288 (m = 1), A081577 (m = 2), A081578 (m = 3), A081579 (m = 4), A081580 (m = 5), A081581 (m = 6), A081582 (m = 7), A143683 (m = 8).

Programs

  • Mathematica
    T[n_, k_] := Sum[Binomial[n - j, k]*Binomial[k, j]*(-3)^j, {j, 0, n}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Oct 15 2017 *)
  • PARI
    for(n=0,10, for(k=0,n, print1(sum(j=0,n, binomial(n-j,k)*  binomial(k,j)*(-3)^j), ", "))) \\ G. C. Greubel, Oct 15 2017

Formula

Sum_{k=0..n} T(n,k) = A088137(n+1).
T(n,k) = T(n-1,k-1) + T(n-1,k) - 3*T(n-2,k-1), n>0.
From Paul Barry, Jan 24 2011: (Start)
T(n,k) = Sum_{j=0..n} binomial(n-j,k)*binomial(k,j)*(-3)^j.
T(n,k) = [k<=n]*Hypergeometric2F1(-k,k-n,1,-2). (End)
E.g.f. for the n-th subdiagonal: exp(x)*P(n,x), where P(n,x) is the polynomial Sum_{k = 0..n} binomial(n,k)*(-2*x)^k/k!. For example, the e.g.f. for the second subdiagonal is exp(x)*(1 - 4*x + 4*x^2/2) = 1 - 3*x - 3*x^2/2! + x^3/3! + 9*x^4/4! + 21*x^5/5! + .... - Peter Bala, Mar 05 2017

A143683 Pascal-(1,8,1) array.

Original entry on oeis.org

1, 1, 1, 1, 10, 1, 1, 19, 19, 1, 1, 28, 118, 28, 1, 1, 37, 298, 298, 37, 1, 1, 46, 559, 1540, 559, 46, 1, 1, 55, 901, 4483, 4483, 901, 55, 1, 1, 64, 1324, 9856, 21286, 9856, 1324, 64, 1, 1, 73, 1828, 18388, 67006, 67006, 18388, 1828, 73, 1, 1, 82, 2413, 30808, 164242, 304300, 164242, 30808, 2413, 82, 1
Offset: 0

Views

Author

Paul Barry, Aug 28 2008

Keywords

Examples

			Square array begins as:
  1,  1,    1,     1,      1,       1,        1, ... A000012;
  1, 10,   19,    28,     37,      46,       55, ... A017173;
  1, 19,  118,   298,    559,     901,     1324, ...
  1, 28,  298,  1540,   4483,    9856,    18388, ...
  1, 37,  559,  4483,  21286,   67006,   164242, ...
  1, 46,  901,  9856,  67006,  304300,  1004590, ...
  1, 55, 1324, 18388, 164242, 1004590,  4443580, ...
Antidiagonal triangle begins as:
  1;
  1,  1;
  1, 10,   1;
  1, 19,  19,    1;
  1, 28, 118,   28,    1;
  1, 37, 298,  298,   37,   1;
  1, 46, 559, 1540,  559,  46,  1;
  1, 55, 901, 4483, 4483, 901, 55, 1;
		

Crossrefs

Cf.Pascal (1,m,1) array: A123562 (m = -3), A098593 (m = -2), A000012 (m = -1), A007318 (m = 0), A008288 (m = 1), A081577 (m = 2), A081578 (m = 3), A081579 (m = 4), A081580 (m = 5), A081581 (m = 6), A081582 (m = 7).

Programs

  • Haskell
    a143683 n k = a143683_tabl !! n !! k
    a143683_row n = a143683_tabl !! n
    a143683_tabl = map fst $ iterate
       (\(us, vs) -> (vs, zipWith (+) (map (* 8) ([0] ++ us ++ [0])) $
                          zipWith (+) ([0] ++ vs) (vs ++ [0]))) ([1], [1, 1])
    -- Reinhard Zumkeller, Mar 16 2014
    
  • Magma
    A143683:= func< n,k,q | (&+[Binomial(k, j)*Binomial(n-j, k)*q^j: j in [0..n-k]]) >;
    [A143683(n,k,8): k in [0..n], n in [0..12]]; // G. C. Greubel, May 27 2021
    
  • Mathematica
    Table[Hypergeometric2F1[-k, k-n, 1, 9], {n,0,12}, {k,0,n}]//Flatten (* Jean-François Alcover, May 24 2013 *)
  • Sage
    flatten([[hypergeometric([-k, k-n], [1], 9).simplify() for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 27 2021

Formula

Square array: T(n, 0) = T(0, k) = 1, T(n, k) = T(n, k-1) + 8*T(n-1, k-1) + T(n-1, k).
Number triangle: T(n,k) = Sum_{j=0..n-k} binomial(n-k,j)*binomial(k,j)*9^j.
Rows are the expansions of (1+8*x)^k/(1-x)^(k+1).
Riordan array (1/(1-x), x*(1+8*x)/(1-x)).
T(n, k) = Hypergeometric2F1([-k, k-n], [1], 9). - Jean-François Alcover, May 24 2013
E.g.f. for the n-th subdiagonal, n = 0,1,2,..., equals exp(x)*P(n,x), where P(n,x) is the polynomial Sum_{k = 0..n} binomial(n,k)*(9*x)^k/k!. For example, the e.g.f. for the second subdiagonal is exp(x)*(1 + 18*x + 81*x^2/2) = 1 + 19*x + 118*x^2/2! + 298*x^3/3! + 559*x^4/4! + 901*x^5/5! + .... - Peter Bala, Mar 05 2017
Sum_{k=0..n} T(n,k) = A003683(n+1). - G. C. Greubel, May 27 2021
Showing 1-10 of 13 results. Next