A081577
Pascal-(1,2,1) array read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 7, 7, 1, 1, 10, 22, 10, 1, 1, 13, 46, 46, 13, 1, 1, 16, 79, 136, 79, 16, 1, 1, 19, 121, 307, 307, 121, 19, 1, 1, 22, 172, 586, 886, 586, 172, 22, 1, 1, 25, 232, 1000, 2086, 2086, 1000, 232, 25, 1, 1, 28, 301, 1576, 4258, 5944, 4258, 1576, 301, 28, 1
Offset: 0
Square array begins as:
1, 1, 1, 1, 1, ... A000012;
1, 4, 7, 10, 13, ... A016777;
1, 7, 22, 46, 79, ... A038764;
1, 10, 46, 136, 307, ... A081583;
1, 13, 79, 307, 886, ... A081584;
From _Roger L. Bagula_, Dec 09 2008: (Start)
As a triangle this begins:
1;
1, 1;
1, 4, 1;
1, 7, 7, 1;
1, 10, 22, 10, 1;
1, 13, 46, 46, 13, 1;
1, 16, 79, 136, 79, 16, 1;
1, 19, 121, 307, 307, 121, 19, 1;
1, 22, 172, 586, 886, 586, 172, 22, 1;
1, 25, 232, 1000, 2086, 2086, 1000, 232, 25, 1;
1, 28, 301, 1576, 4258, 5944, 4258, 1576, 301, 28, 1; (End)
- Reinhard Zumkeller, Rows n = 0..125 of table, flattened
- Peter Bala, A note on the diagonals of a proper Riordan Array
- Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, J. Integer Sequ., Vol. 9 (2006), Article 06.2.4.
- Paul Barry, The Central Coefficients of a Family of Pascal-like Triangles and Colored Lattice Paths, J. Int. Seq., Vol. 22 (2019), Article 19.1.3.
- Shanghua Zheng, Li Guo, and Huizhen Qiu, Extended Rota-Baxter algebras, diagonally colored Delannoy paths and Hopf algebras, arXiv:2401.11363 [math.RA], 2024. See pp. 44-45.
Cf. Pascal-(1,a,1) array:
A123562 (a=-3),
A098593 (=-2),
A000012 (a=-1),
A007318 (a=0),
A008288 (a=1),
A081577(a=2),
A081578 (a=3),
A081579 (a=4),
A081580 (a=5),
A081581 (a=6),
A081582 (a=7),
A143683(a=8). [From
Roger L. Bagula, Dec 09 2008],
Philippe Deléham, Jan 10 2014, Mar 16 2014.
-
a081577 n k = a081577_tabl !! n !! k
a081577_row n = a081577_tabl !! n
a081577_tabl = map fst $ iterate
(\(us, vs) -> (vs, zipWith (+) (map (* 2) ([0] ++ us ++ [0])) $
zipWith (+) ([0] ++ vs) (vs ++ [0]))) ([1], [1, 1])
-- Reinhard Zumkeller, Mar 16 2014
-
A081577:= func< n,k | (&+[Binomial(k,j)*Binomial(n-j,k)*2^j: j in [0..n-k]]) >;
[A081577(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, May 25 2021
-
a[0]={1}; a[1]={1, 1}; a[n_]:= a[n]= 2*Join[{0}, a[n-2], {0}] + Join[{0}, a[n-1]] + Join[a[n-1], {0}]; Table[a[n], {n,0,10}]//Flatten (* Roger L. Bagula, Dec 09 2008 *)
Table[Hypergeometric2F1[-k, k-n, 1, 3], {n,0,10}, {k,0,n}]//Flatten (* Jean-François Alcover, May 24 2013 *)
-
flatten([[hypergeometric([-k, k-n], [1], 3).simplify() for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 25 2021
A099087
Expansion of 1/(1 - 2*x + 2*x^2).
Original entry on oeis.org
1, 2, 2, 0, -4, -8, -8, 0, 16, 32, 32, 0, -64, -128, -128, 0, 256, 512, 512, 0, -1024, -2048, -2048, 0, 4096, 8192, 8192, 0, -16384, -32768, -32768, 0, 65536, 131072, 131072, 0, -262144, -524288, -524288, 0, 1048576, 2097152, 2097152, 0, -4194304, -8388608, -8388608, 0, 16777216
Offset: 0
-
a:=[1,2];; for n in [3..50] do a[n]:=2*a[n-1]-2*a[n-2]; od; a; # G. C. Greubel, Mar 16 2019
-
I:=[1,2]; [n le 2 select I[n] else 2*(Self(n-1) - Self(n-2)): n in [1..50]]; // G. C. Greubel, Mar 16 2019
-
CoefficientList[Series[1/(1 -2x +2x^2), {x, 0, 50}], x] (* Michael De Vlieger, Dec 24 2015 *)
-
x='x+O('x^50); Vec(1/(1-2*x+2*x^2)) \\ Altug Alkan, Dec 24 2015
-
[lucas_number1(n,2,2) for n in range(1, 50)] # Zerinvary Lajos, Apr 23 2009
A144431
Triangle read by rows: T(n,k) (1 <= k <= n) given by T(n,1) = T(n,n) = 1, otherwise T(n, k) = (m*n-m*k+1)*T(n-1,k-1) + (m*k-m+1)*T(n-1,k), where m = -1.
Original entry on oeis.org
1, 1, 1, 1, 0, 1, 1, -1, -1, 1, 1, -2, 2, -2, 1, 1, -3, 2, 2, -3, 1, 1, -4, 7, -8, 7, -4, 1, 1, -5, 9, -5, -5, 9, -5, 1, 1, -6, 16, -26, 30, -26, 16, -6, 1, 1, -7, 20, -28, 14, 14, -28, 20, -7, 1, 1, -8, 29, -64, 98, -112, 98, -64, 29, -8, 1, 1, -9, 35, -75, 90, -42, -42, 90, -75, 35, -9, 1
Offset: 1
Triangle begins:
1;
1, 1;
1, 0, 1;
1, -1, -1, 1;
1, -2, 2, -2, 1;
1, -3, 2, 2, -3, 1;
1, -4, 7, -8, 7, -4, 1;
1, -5, 9, -5, -5, 9, -5, 1;
1, -6, 16, -26, 30, -26, 16, -6, 1;
1, -7, 20, -28, 14, 14, -28, 20, -7, 1;
...
-
T:=proc(n,k,l) option remember;
if (n=1 or k=1 or k=n) then 1 else
(l*n-l*k+1)*T(n-1,k-1,l)+(l*k-l+1)*T(n-1,k,l); fi; end;
for n from 1 to 15 do lprint([seq(T(n,k,-1),k=1..n)]); od; # N. J. A. Sloane, May 08 2013
-
m=-1;
T[n_, 1]:= 1; T[n_, n_]:= 1;
T[n_, k_]:= (m*n-m*k+1)*T[n-1, k-1] + (m*k - (m - 1))*T[n-1,k];
Table[T[n, k], {n,15}, {k,n}]//Flatten
-
def A144431(n,k):
if (n<3): return 1
else: return (-1)^(k-1)*binomial(n-3, k-1) + (-1)^(n+k)*binomial(n-3, k-3)
flatten([[A144431(n,k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Mar 01 2022
A081578
Pascal-(1,3,1) array.
Original entry on oeis.org
1, 1, 1, 1, 5, 1, 1, 9, 9, 1, 1, 13, 33, 13, 1, 1, 17, 73, 73, 17, 1, 1, 21, 129, 245, 129, 21, 1, 1, 25, 201, 593, 593, 201, 25, 1, 1, 29, 289, 1181, 1921, 1181, 289, 29, 1, 1, 33, 393, 2073, 4881, 4881, 2073, 393, 33, 1, 1, 37, 513, 3333, 10497, 15525, 10497, 3333, 513, 37, 1
Offset: 0
Square array begins as:
1, 1, 1, 1, 1, ... A000012;
1, 5, 9, 13, 17, ... A016813;
1, 9, 33, 73, 129, ... A081585;
1, 13, 73, 245, 593, ... A081586;
1, 17, 129, 593, 1921, ...
As a triangle this begins:
1;
1, 1;
1, 5, 1;
1, 9, 9, 1;
1, 13, 33, 13, 1;
1, 17, 73, 73, 17, 1;
1, 21, 129, 245, 129, 21, 1;
1, 25, 201, 593, 593, 201, 25, 1;
1, 29, 289, 1181, 1921, 1181, 289, 29, 1;
1, 33, 393, 2073, 4881, 4881, 2073, 393, 33, 1;
1, 37, 513, 3333, 10497, 15525, 10497, 3333, 513, 37, 1; - _Philippe Deléham_, Mar 15 2014
Cf. Pascal (1,m,1) array:
A123562 (m = -3),
A098593 (m = -2),
A000012 (m = -1),
A007318 (m = 0),
A008288 (m = 1),
A081577 (m = 2),
A081579 (m = 4),
A081580 (m = 5),
A081581 (m = 6),
A081582 (m = 7),
A143683 (m = 8).
-
a081578 n k = a081578_tabl !! n !! k
a081578_row n = a081578_tabl !! n
a081578_tabl = map fst $ iterate
(\(us, vs) -> (vs, zipWith (+) (map (* 3) ([0] ++ us ++ [0])) $
zipWith (+) ([0] ++ vs) (vs ++ [0]))) ([1], [1, 1])
-- Reinhard Zumkeller, Mar 16 2014
-
A081578:= func< n,k,q | (&+[Binomial(k, j)*Binomial(n-j, k)*q^j: j in [0..n-k]]) >;
[A081578(n,k,3): k in [0..n], n in [0..12]]; // G. C. Greubel, May 26 2021
-
Table[Hypergeometric2F1[-k, k-n, 1, 4], {n,0,10}, {k,0,n}]//Flatten (* Jean-François Alcover, May 24 2013 *)
-
flatten([[hypergeometric([-k, k-n], [1], 4).simplify() for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 26 2021
A081582
Pascal-(1,7,1) array.
Original entry on oeis.org
1, 1, 1, 1, 9, 1, 1, 17, 17, 1, 1, 25, 97, 25, 1, 1, 33, 241, 241, 33, 1, 1, 41, 449, 1161, 449, 41, 1, 1, 49, 721, 3297, 3297, 721, 49, 1, 1, 57, 1057, 7161, 14721, 7161, 1057, 57, 1, 1, 65, 1457, 13265, 44961, 44961, 13265, 1457, 65, 1, 1, 73, 1921, 22121, 108353, 192969, 108353, 22121, 1921, 73, 1
Offset: 0
Rows begin
1, 1, 1, 1, 1, ... A000012;
1, 9, 17, 25, 33, ... A017077;
1, 17, 97, 241, 449, ... A081593;
1, 25, 241, 1161, 3297, ...
1, 33, 449, 3297, 14721, ...
Triangle begins:
1;
1, 1;
1, 9, 1;
1, 17, 17, 1;
1, 25, 97, 25, 1;
1, 33, 241, 241, 33, 1;
1, 41, 449, 1161, 449, 41, 1;
1, 49, 721, 3297, 3297, 721, 49, 1;
1, 57, 1057, 7161, 14721, 7161, 1057, 57, 1;
Cf. Pascal (1,m,1) array:
A123562 (m = -3),
A098593 (m = -2),
A000012 (m = -1),
A007318 (m = 0),
A008288 (m = 1),
A081577 (m = 2),
A081578 (m = 3),
A081579 (m = 4),
A081580 (m = 5),
A081581 (m = 6),
A143683 (m = 8).
-
A081582:= func< n,k,q | (&+[Binomial(k, j)*Binomial(n-j, k)*q^j: j in [0..n-k]]) >;
[A081582(n,k,7): k in [0..n], n in [0..12]]; // G. C. Greubel, May 26 2021
-
Table[ Hypergeometric2F1[-k, k-n, 1, 8], {n,0,10}, {k,0,n}]//Flatten (* Jean-François Alcover, May 24 2013 *)
-
flatten([[hypergeometric([-k, k-n], [1], 8).simplify() for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 26 2021
A081579
Pascal-(1,4,1) array.
Original entry on oeis.org
1, 1, 1, 1, 6, 1, 1, 11, 11, 1, 1, 16, 46, 16, 1, 1, 21, 106, 106, 21, 1, 1, 26, 191, 396, 191, 26, 1, 1, 31, 301, 1011, 1011, 301, 31, 1, 1, 36, 436, 2076, 3606, 2076, 436, 36, 1, 1, 41, 596, 3716, 9726, 9726, 3716, 596, 41, 1, 1, 46, 781, 6056, 21746, 33876, 21746, 6056, 781, 46, 1
Offset: 0
Square array begins as:
1, 1, 1, 1, 1, ... A000012;
1, 6, 11, 16, 21, ... A016861;
1, 11, 46, 106, 191, ... A081587;
1, 16, 106, 396, 1011, ... A081588;
1, 21, 191, 1011, 3606, ...
As triangle this begins:
1;
1, 1;
1, 6, 1;
1, 11, 11, 1;
1, 16, 46, 16, 1;
1, 21, 106, 106, 21, 1;
1, 26, 191, 396, 191, 26, 1;
1, 31, 301, 1011, 1011, 301, 31, 1;
1, 36, 436, 2076, 3606, 2076, 436, 36, 1;
1, 41, 596, 3716, 9726, 9726, 3716, 596, 41, 1;
1, 46, 781, 6056, 21746, 33876, 21746, 6056, 781, 46, 1; - _Philippe Deléham_, Mar 15 2014
Cf. Pascal (1,m,1) array:
A123562 (m = -3),
A098593 (m = -2),
A000012 (m = -1),
A007318 (m = 0),
A008288 (m = 1),
A081577 (m = 2),
A081578 (m = 3),
A081580 (m = 5),
A081581 (m = 6),
A081582 (m = 7),
A143683 (m = 8).
-
A081579:= func< n,k,q | (&+[Binomial(k, j)*Binomial(n-j, k)*q^j: j in [0..n-k]]) >;
[A081579(n,k,4): k in [0..n], n in [0..12]]; // G. C. Greubel, May 26 2021
-
Table[Hypergeometric2F1[-k, k-n, 1, 5], {n,0,12}, {k,0,n}]//Flatten (* Jean-François Alcover, May 24 2013 *)
-
flatten([[hypergeometric([-k, k-n], [1], 5).simplify() for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 26 2021
A081580
Pascal-(1,5,1) array.
Original entry on oeis.org
1, 1, 1, 1, 7, 1, 1, 13, 13, 1, 1, 19, 61, 19, 1, 1, 25, 145, 145, 25, 1, 1, 31, 265, 595, 265, 31, 1, 1, 37, 421, 1585, 1585, 421, 37, 1, 1, 43, 613, 3331, 6145, 3331, 613, 43, 1, 1, 49, 841, 6049, 17401, 17401, 6049, 841, 49, 1, 1, 55, 1105, 9955, 40105, 65527, 40105, 9955, 1105, 55, 1
Offset: 0
Square array begins as:
1, 1, 1, 1, 1, ... A000012;
1, 7, 13, 19, 25, ... A016921;
1, 13, 61, 145, 265, ... A081589;
1, 19, 145, 595, 1585, ... A081590;
1, 25, 265, 1585, 6145, ...
The triangle begins as:
1;
1, 1;
1, 7, 1;
1, 13, 13, 1;
1, 19, 61, 19, 1;
1, 25, 145, 145, 25, 1;
1, 31, 265, 595, 265, 31, 1;
1, 37, 421, 1585, 1585, 421, 37, 1;
1, 43, 613, 3331, 6145, 3331, 613, 43, 1;
1, 49, 841, 6049, 17401, 17401, 6049, 841, 49, 1;
1, 55, 1105, 9955, 40105, 65527, 40105, 9955, 1105, 55, 1; - _Philippe Deléham_, Mar 15 2014
Cf. Pascal (1,m,1) array:
A123562 (m = -3),
A098593 (m = -2),
A000012 (m = -1),
A007318 (m = 0),
A008288 (m = 1),
A081577 (m = 2),
A081578 (m = 3),
A081579 (m = 4),
A081581 (m = 6),
A081582 (m = 7),
A143683 (m = 8).
-
A081580:= func< n,k,q | (&+[Binomial(k, j)*Binomial(n-j, k)*q^j: j in [0..n-k]]) >;
[A081580(n,k,5): k in [0..n], n in [0..12]]; // G. C. Greubel, May 26 2021
-
Table[Hypergeometric2F1[-k, k-n, 1, 6], {n,0,10}, {k,0,n}]//Flatten (* Jean-François Alcover, May 24 2013 *)
-
flatten([[hypergeometric([-k, k-n], [1], 6).simplify() for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 26 2021
A081581
Pascal-(1,6,1) array.
Original entry on oeis.org
1, 1, 1, 1, 8, 1, 1, 15, 15, 1, 1, 22, 78, 22, 1, 1, 29, 190, 190, 29, 1, 1, 36, 351, 848, 351, 36, 1, 1, 43, 561, 2339, 2339, 561, 43, 1, 1, 50, 820, 5006, 9766, 5006, 820, 50, 1, 1, 57, 1128, 9192, 28806, 28806, 9192, 1128, 57, 1, 1, 64, 1485, 15240, 68034, 116208, 68034, 15240, 1485, 64, 1
Offset: 0
Rows start as:
1, 1, 1, 1, 1, ... A000012;
1, 8, 15, 22, 29, ... A016993;
1, 15, 78, 190, 351, ... A081591;
1, 22, 190, 848, 2339, ...
1, 29, 351, 2339, 9766, ...
The triangle starts as:
1;
1, 1;
1, 8, 1;
1, 15, 15, 1;
1, 22, 78, 22, 1;
1, 29, 190, 190, 29, 1;
1, 36, 351, 848, 351, 36, 1;
1, 43, 561, 2339, 2339, 561, 43, 1;
Cf. Pascal (1,m,1) array:
A123562 (m = -3),
A098593 (m = -2),
A000012 (m = -1),
A007318 (m = 0),
A008288 (m = 1),
A081577 (m = 2),
A081578 (m = 3),
A081579 (m = 4),
A081580 (m = 5),
A081582 (m = 7),
A143683 (m = 8).
-
A081581:= func< n,k,q | (&+[Binomial(k, j)*Binomial(n-j, k)*q^j: j in [0..n-k]]) >;
[A081581(n,k,6): k in [0..n], n in [0..12]]; // G. C. Greubel, May 26 2021
-
Table[Hypergeometric2F1[-k, k-n, 1, 7], {n,0,10}, {k,0,n}]//Flatten (* Jean-François Alcover, May 24 2013 *)
-
t(n, k) = sum(j=0, n-k, binomial(n-k, j)*binomial(k, j)*7^j) \\ Michel Marcus, May 24 2013
-
flatten([[hypergeometric([-k, k-n], [1], 7).simplify() for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 26 2021
A144432
Triangle, T(n, k), read by rows: T(n, k) = t(n, k)^2 - t(n, k) - 1, where t(n,k) = (m*(n-k) + 1)*t(n-1, k-1) + (m*k - (m-1))*t(n-1, k) and m = -1.
Original entry on oeis.org
-1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 5, 1, 5, -1, -1, 11, 1, 1, 11, -1, -1, 19, 41, 71, 41, 19, -1, -1, 29, 71, 29, 29, 71, 29, -1, -1, 41, 239, 701, 869, 701, 239, 41, -1, -1, 55, 379, 811, 181, 181, 811, 379, 55, -1
Offset: 1
Triangle begins as:
-1;
-1, -1;
-1, -1, -1;
-1, 1, 1, -1;
-1, 5, 1, 5, -1;
-1, 11, 1, 1, 11, -1;
-1, 19, 41, 71, 41, 19, -1;
-1, 29, 71, 29, 29, 71, 29, -1;
-1, 41, 239, 701, 869, 701, 239, 41, -1;
-1, 55, 379, 811, 181, 181, 811, 379, 55, -1;
-
t[n_, k_, m_]:= t[n, k, m]= If[k==1 || k==n, 1, (m*(n-k)+1)*t[n-1,k-1,m] + (m*(k - 1)+1)*t[n-1,k,m]];
T[n_, k_, m_]:= t[n,k,m]^2 -t[n,k,m] -1;
Table[T[n,k,-1], {n,15}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 02 2022 *)
-
def t(n,k):
if (n<3): return 1
else: return (-1)^(k-1)*binomial(n-3, k-1) + (-1)^(n+k)*binomial(n-3, k-3)
def A144432(n,k): return t(n,k)^2 - t(n,k) - 1
flatten([[A144432(n,k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Mar 02 2022
A123562
Pascal-(1,-3,1) array, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, -1, 1, 1, -3, -3, 1, 1, -5, -3, -5, 1, 1, -7, 1, 1, -7, 1, 1, -9, 9, 11, 9, -9, 1, 1, -11, 21, 17, 17, 21, -11, 1, 1, -13, 37, 11, 1, 11, 37, -13, 1, 1, -15, 57, -15, -39, -39, -15, 57, -15, 1, 1, -17, 81, -69, -87, -81, -87, -69, 81, -17, 1
Offset: 0
Triangle begins:
1;
1, 1;
1, -1, 1;
1, -3, -3, 1;
1, -5, -3, -5, 1;
1, -7, 1, 1, -7, 1;
1, -9, 9, 11, 9, -9, 1;
1, -11, 21, 17, 17, 21, -11, 1;
1, -13, 37, 11, 1, 11, 37, -13, 1;
Cf. Pascal (1,m,1) array:
A098593 (m = -2),
A000012 (m = -1),
A007318 (m = 0),
A008288 (m = 1),
A081577 (m = 2),
A081578 (m = 3),
A081579 (m = 4),
A081580 (m = 5),
A081581 (m = 6),
A081582 (m = 7),
A143683 (m = 8).
-
T[n_, k_] := Sum[Binomial[n - j, k]*Binomial[k, j]*(-3)^j, {j, 0, n}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Oct 15 2017 *)
-
for(n=0,10, for(k=0,n, print1(sum(j=0,n, binomial(n-j,k)* binomial(k,j)*(-3)^j), ", "))) \\ G. C. Greubel, Oct 15 2017
Showing 1-10 of 14 results.
Comments