cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A081577 Pascal-(1,2,1) array read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 7, 7, 1, 1, 10, 22, 10, 1, 1, 13, 46, 46, 13, 1, 1, 16, 79, 136, 79, 16, 1, 1, 19, 121, 307, 307, 121, 19, 1, 1, 22, 172, 586, 886, 586, 172, 22, 1, 1, 25, 232, 1000, 2086, 2086, 1000, 232, 25, 1, 1, 28, 301, 1576, 4258, 5944, 4258, 1576, 301, 28, 1
Offset: 0

Views

Author

Paul Barry, Mar 23 2003

Keywords

Comments

One of a family of Pascal-like arrays. A007318 is equivalent to the (1,0,1)-array. A008288 is equivalent to the (1,1,1)-array. Rows include A016777, A038764, A081583, A081584. Coefficients of the row polynomials in the Newton basis are given by A013610.
As a number triangle, this is the Riordan array (1/(1-x), x(1+2x)/(1-x)). It has row sums A002605 and diagonal sums A077947. - Paul Barry, Jan 24 2005
All entries are == 1 mod 3. - Roger L. Bagula, Oct 04 2008
Row sums are A002605. - Roger L. Bagula, Dec 09 2008
As a number triangle T, T(2n,n)=A069835(n). - Philippe Deléham, Jan 10 2014

Examples

			Square array begins as:
  1,  1,  1,   1,   1, ... A000012;
  1,  4,  7,  10,  13, ... A016777;
  1,  7, 22,  46,  79, ... A038764;
  1, 10, 46, 136, 307, ... A081583;
  1, 13, 79, 307, 886, ... A081584;
From _Roger L. Bagula_, Dec 09 2008: (Start)
As a triangle this begins:
  1;
  1,  1;
  1,  4,   1;
  1,  7,   7,    1;
  1, 10,  22,   10,    1;
  1, 13,  46,   46,   13,    1;
  1, 16,  79,  136,   79,   16,    1;
  1, 19, 121,  307,  307,  121,   19,    1;
  1, 22, 172,  586,  886,  586,  172,   22,   1;
  1, 25, 232, 1000, 2086, 2086, 1000,  232,  25,  1;
  1, 28, 301, 1576, 4258, 5944, 4258, 1576, 301, 28, 1; (End)
		

Crossrefs

Cf. Pascal-(1,a,1) array: A123562 (a=-3), A098593 (=-2), A000012 (a=-1), A007318 (a=0), A008288 (a=1), A081577(a=2), A081578 (a=3), A081579 (a=4), A081580 (a=5), A081581 (a=6), A081582 (a=7), A143683(a=8). [From Roger L. Bagula, Dec 09 2008], Philippe Deléham, Jan 10 2014, Mar 16 2014.

Programs

  • Haskell
    a081577 n k = a081577_tabl !! n !! k
    a081577_row n = a081577_tabl !! n
    a081577_tabl = map fst $ iterate
        (\(us, vs) -> (vs, zipWith (+) (map (* 2) ([0] ++ us ++ [0])) $
                           zipWith (+) ([0] ++ vs) (vs ++ [0]))) ([1], [1, 1])
    -- Reinhard Zumkeller, Mar 16 2014
    
  • Magma
    A081577:= func< n,k | (&+[Binomial(k,j)*Binomial(n-j,k)*2^j: j in [0..n-k]]) >;
    [A081577(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, May 25 2021
    
  • Mathematica
    a[0]={1}; a[1]={1, 1}; a[n_]:= a[n]= 2*Join[{0}, a[n-2], {0}] + Join[{0}, a[n-1]] + Join[a[n-1], {0}]; Table[a[n], {n,0,10}]//Flatten (* Roger L. Bagula, Dec 09 2008 *)
    Table[Hypergeometric2F1[-k, k-n, 1, 3], {n,0,10}, {k,0,n}]//Flatten (* Jean-François Alcover, May 24 2013 *)
  • Sage
    flatten([[hypergeometric([-k, k-n], [1], 3).simplify() for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 25 2021

Formula

Square array T(n, k) defined by T(n, 0) = T(0, k) = 1, T(n, k) = T(n, k-1) + 2*T(n-1, k-1) + T(n-1, k).
Rows are the expansions of (1+2*x)^k/(1-x)^(k+1).
G.f.: 1/(1-x-y-2*x*y). - Ralf Stephan, Apr 28 2004
T(n,k) = Sum_{j=0..n} binomial(k,j-k)*binomial(n+k-j,k)*2^(j-k). - Paul Barry, Oct 23 2006
a(n) = 2*{0, a(n-2), 0} + {0, a(n-1)} + {a(n-1), 0}. - Roger L. Bagula, Dec 09 2008
T(n, k) = Hypergeometric2F1([-k, k-n], [1], 3). - Jean-François Alcover, May 24 2013
The e.g.f. for the n-th subdiagonal, n = 0,1,2,..., equals exp(x)*P(n,x), where P(n,x) is the polynomial Sum_{k = 0..n} binomial(n,k)*(3*x)^k/k!. For example, the e.g.f. for the second subdiagonal is exp(x)*(1 + 6*x + 9*x^2/2) = 1 + 7*x + 22*x^2/2! + 46*x^3/3! + 79*x^4/4! + 121*x^5/5! + .... - Peter Bala, Mar 05 2017
Sum_{k=0..n} T(n,k) = A002605(n). - G. C. Greubel, May 25 2021

A099087 Expansion of 1/(1 - 2*x + 2*x^2).

Original entry on oeis.org

1, 2, 2, 0, -4, -8, -8, 0, 16, 32, 32, 0, -64, -128, -128, 0, 256, 512, 512, 0, -1024, -2048, -2048, 0, 4096, 8192, 8192, 0, -16384, -32768, -32768, 0, 65536, 131072, 131072, 0, -262144, -524288, -524288, 0, 1048576, 2097152, 2097152, 0, -4194304, -8388608, -8388608, 0, 16777216
Offset: 0

Views

Author

Paul Barry, Sep 24 2004

Keywords

Comments

Yet another variation on A009545.
Row sums of Krawtchouk triangle A098593. Partial sums of e.g.f. exp(x)cos(x), or 2^(n/2)cos(Pi*n/2). See A009116.
Binomial transform of A057077. - R. J. Mathar, Nov 04 2008
Partial sums of A146559. - Philippe Deléham, Dec 01 2008
Pisano period lengths: 1, 1, 8, 1, 4, 8, 24, 1, 24, 4, 40, 8, 12, 24, 8, 1, 16, 24, 72, 4, ... - R. J. Mathar, Aug 10 2012
Also the inverse Catalan transform of A000079. - Arkadiusz Wesolowski, Oct 26 2012

Crossrefs

Programs

  • GAP
    a:=[1,2];; for n in [3..50] do a[n]:=2*a[n-1]-2*a[n-2]; od; a; # G. C. Greubel, Mar 16 2019
  • Magma
    I:=[1,2]; [n le 2 select I[n] else 2*(Self(n-1) - Self(n-2)): n in [1..50]]; // G. C. Greubel, Mar 16 2019
    
  • Mathematica
    CoefficientList[Series[1/(1 -2x +2x^2), {x, 0, 50}], x] (* Michael De Vlieger, Dec 24 2015 *)
  • PARI
    x='x+O('x^50); Vec(1/(1-2*x+2*x^2)) \\ Altug Alkan, Dec 24 2015
    
  • Sage
    [lucas_number1(n,2,2) for n in range(1, 50)] # Zerinvary Lajos, Apr 23 2009
    

Formula

E.g.f.: exp(x)*(cos(x) + sin(x)).
a(n) = 2^(n/2)*(cos(Pi*n/4) + sin(Pi*n/4)).
a(n) = Sum_{k=0..n} Sum_{i=0..k} binomial(n-k, k-i)*binomial(n, i) *(-1)^(k-i).
a(n) = 2*(a(n-1) - a(n-2)).
From R. J. Mathar, Apr 18 2008: (Start)
a(n) = (1-i)^(n-1) + (1+i)^(n-1) where i=sqrt(-1).
a(n) = 2 Sum_{k=0..(n-1)/2} (-1)^k*binomial(n-1,2k) if n>0. (End)
a(n) = Sum_{k=0..n} A109466(n,k)*2^k. - Philippe Deléham, Oct 28 2008
E.g.f.: (cos(x)+sin(x))*exp(x) = G(0); G(k)=1+2*x/(4*k+1-x*(4*k+1)/(2*(2*k+1)+x-2*(x^2)*(2*k+1)/((x^2)-(2*k+2)*(4*k+3)/G(k+1)))); (continued fraction). - Sergei N. Gladkovskii, Nov 26 2011
G.f.: U(0) where U(k)= 1 + x*(k+3) - x*(k+1)/U(k+1) ; (continued fraction, 1-step). - Sergei N. Gladkovskii, Oct 10 2012
a(n) = Re((1+i)^n) + Im((1+i)^n) where i = sqrt(-1) = A146559(n) + A009545(n). - Philippe Deléham, Feb 13 2013
a(n) = Sum_{j=0..n} binomial(n, j)*(-1)^binomial(j, 2); this is the case m=2 and z=-1 of f(m,n)(z) = Sum_{j=0..n} binomial(n, j)*z^binomial(j, m). See Dilcher and Ulas. - Michel Marcus, Sep 01 2020

Extensions

Signs added by N. J. A. Sloane, Nov 14 2006

A144431 Triangle read by rows: T(n,k) (1 <= k <= n) given by T(n,1) = T(n,n) = 1, otherwise T(n, k) = (m*n-m*k+1)*T(n-1,k-1) + (m*k-m+1)*T(n-1,k), where m = -1.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, -1, -1, 1, 1, -2, 2, -2, 1, 1, -3, 2, 2, -3, 1, 1, -4, 7, -8, 7, -4, 1, 1, -5, 9, -5, -5, 9, -5, 1, 1, -6, 16, -26, 30, -26, 16, -6, 1, 1, -7, 20, -28, 14, 14, -28, 20, -7, 1, 1, -8, 29, -64, 98, -112, 98, -64, 29, -8, 1, 1, -9, 35, -75, 90, -42, -42, 90, -75, 35, -9, 1
Offset: 1

Views

Author

Roger L. Bagula, Oct 04 2008

Keywords

Comments

Row sums are: {1, 2, 2, 0, 0, 0, 0, 0, 0, 0, ...}.
For m = ...,-1,0,1,2 we get ..., A144431, A007318 (Pascal), A008292, A060187, ..., so this might be called a sub-Pascal triangle.
The triangle starts off like A098593, but is different further on.

Examples

			Triangle begins:
  1;
  1,   1;
  1,   0,   1;
  1,  -1,  -1,   1;
  1,  -2,   2,  -2,   1;
  1,  -3,   2,   2,  -3,   1;
  1,  -4,   7,  -8,   7,  -4,   1;
  1,  -5,   9,  -5,  -5,   9,  -5,   1;
  1,  -6,  16, -26,  30, -26,  16,  -6,   1;
  1,  -7,  20, -28,  14,  14, -28,  20,  -7,   1;
  ...
		

Crossrefs

Programs

  • Maple
    T:=proc(n,k,l) option remember;
    if (n=1 or k=1 or k=n) then 1 else
    (l*n-l*k+1)*T(n-1,k-1,l)+(l*k-l+1)*T(n-1,k,l); fi; end;
    for n from 1 to 15 do lprint([seq(T(n,k,-1),k=1..n)]); od; # N. J. A. Sloane, May 08 2013
  • Mathematica
    m=-1;
    T[n_, 1]:= 1; T[n_, n_]:= 1;
    T[n_, k_]:= (m*n-m*k+1)*T[n-1, k-1] + (m*k - (m - 1))*T[n-1,k];
    Table[T[n, k], {n,15}, {k,n}]//Flatten
  • Sage
    def A144431(n,k):
        if (n<3): return 1
        else: return (-1)^(k-1)*binomial(n-3, k-1) + (-1)^(n+k)*binomial(n-3, k-3)
    flatten([[A144431(n,k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Mar 01 2022

Formula

T(n,k) = (m*n - m*k + 1)*T(n-1, k-1) + (m*k - (m-1))*T(n-1, k) with T(n, 1) = T(n, n) = 1 and m = -1.
From G. C. Greubel, Mar 01 2022: (Start)
T(n, n-k) = T(n, k).
T(n, k) = (-1)^(k-1)*binomial(n-3, k-1) + (-1)^(n+k)*binomial(n-3, k-3) with T(1, k) = T(2, k) = 1.
Sum_{k=1..n} T(n, k) = [n==1] + 2*[n==2] + 2*[n==3] + (1-(-1)^n)*0^(n-3)*[n>3]. (End)

Extensions

Edited by N. J. A. Sloane, May 08 2013

A081578 Pascal-(1,3,1) array.

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 9, 9, 1, 1, 13, 33, 13, 1, 1, 17, 73, 73, 17, 1, 1, 21, 129, 245, 129, 21, 1, 1, 25, 201, 593, 593, 201, 25, 1, 1, 29, 289, 1181, 1921, 1181, 289, 29, 1, 1, 33, 393, 2073, 4881, 4881, 2073, 393, 33, 1, 1, 37, 513, 3333, 10497, 15525, 10497, 3333, 513, 37, 1
Offset: 0

Views

Author

Paul Barry, Mar 23 2003

Keywords

Comments

One of a family of Pascal-like arrays. A007318 is equivalent to the (1,0,1)-array. A008288 is equivalent to the (1,1,1)-array. Rows include A016813, A081585, A081586. Coefficients of the row polynomials in the Newton basis are given by A013611.
As a number triangle, this is the Riordan array (1/(1-x), x*(1+3*x)/(1-x)). It has row sums A015518(n+1) and diagonal sums A103143. - Paul Barry, Jan 24 2005

Examples

			Square array begins as:
  1,  1,   1,   1,    1, ... A000012;
  1,  5,   9,  13,   17, ... A016813;
  1,  9,  33,  73,  129, ... A081585;
  1, 13,  73, 245,  593, ... A081586;
  1, 17, 129, 593, 1921, ...
As a triangle this begins:
  1;
  1,  1;
  1,  5,   1;
  1,  9,   9,    1;
  1, 13,  33,   13,     1;
  1, 17,  73,   73,    17,     1;
  1, 21, 129,  245,   129,    21,     1;
  1, 25, 201,  593,   593,   201,    25,    1;
  1, 29, 289, 1181,  1921,  1181,   289,   29,   1;
  1, 33, 393, 2073,  4881,  4881,  2073,  393,  33,  1;
  1, 37, 513, 3333, 10497, 15525, 10497, 3333, 513, 37, 1; - _Philippe Deléham_, Mar 15 2014
		

Crossrefs

Cf. Pascal (1,m,1) array: A123562 (m = -3), A098593 (m = -2), A000012 (m = -1), A007318 (m = 0), A008288 (m = 1), A081577 (m = 2), A081579 (m = 4), A081580 (m = 5), A081581 (m = 6), A081582 (m = 7), A143683 (m = 8).

Programs

  • Haskell
    a081578 n k = a081578_tabl !! n !! k
    a081578_row n = a081578_tabl !! n
    a081578_tabl = map fst $ iterate
       (\(us, vs) -> (vs, zipWith (+) (map (* 3) ([0] ++ us ++ [0])) $
                          zipWith (+) ([0] ++ vs) (vs ++ [0]))) ([1], [1, 1])
    -- Reinhard Zumkeller, Mar 16 2014
    
  • Magma
    A081578:= func< n,k,q | (&+[Binomial(k, j)*Binomial(n-j, k)*q^j: j in [0..n-k]]) >;
    [A081578(n,k,3): k in [0..n], n in [0..12]]; // G. C. Greubel, May 26 2021
    
  • Mathematica
    Table[Hypergeometric2F1[-k, k-n, 1, 4], {n,0,10}, {k,0,n}]//Flatten (* Jean-François Alcover, May 24 2013 *)
  • Sage
    flatten([[hypergeometric([-k, k-n], [1], 4).simplify() for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 26 2021

Formula

Square array T(n, k) defined by T(n, 0) = T(0, k) = 1, T(n, k) = T(n, k-1) + 3*T(n-1, k-1) + T(n-1, k).
Rows are the expansions of (1+3*x)^k/(1-x)^(k+1).
T(n,k) = Sum_{j=0..n} binomial(k,j-k)*binomial(n+k-j,k)*3^(j-k). - Paul Barry, Oct 23 2006
E.g.f. for the n-th subdiagonal of the triangle, n = 0,1,2,..., equals exp(x)*P(n,x), where P(n,x) is the polynomial Sum_{k = 0..n} binomial(n,k)*(4*x)^k/k!. For example, the e.g.f. for the second subdiagonal is exp(x)*(1 + 8*x + 16*x^2/2) = 1 + 9*x + 33*x^2/2! + 73*x^3/3! + 129*x^4/4! + 201*x^5/5! + .... - Peter Bala, Mar 05 2017
From G. C. Greubel, May 26 2021: (Start)
T(n, k, m) = Hypergeometric2F1([-k, k-n], [1], m+1), for m = 3.
T(n, k, m) = Sum_{j=0..n-k} binomial(k,j)*binomial(n-j,k)*m^j, for m = 3.
Sum_{k=0..n} T(n, k, 3) = A015518(n+1). (End)

A081582 Pascal-(1,7,1) array.

Original entry on oeis.org

1, 1, 1, 1, 9, 1, 1, 17, 17, 1, 1, 25, 97, 25, 1, 1, 33, 241, 241, 33, 1, 1, 41, 449, 1161, 449, 41, 1, 1, 49, 721, 3297, 3297, 721, 49, 1, 1, 57, 1057, 7161, 14721, 7161, 1057, 57, 1, 1, 65, 1457, 13265, 44961, 44961, 13265, 1457, 65, 1, 1, 73, 1921, 22121, 108353, 192969, 108353, 22121, 1921, 73, 1
Offset: 0

Views

Author

Paul Barry, Mar 23 2003

Keywords

Comments

One of a family of Pascal-like arrays. A007318 is equivalent to the (1,0,1)-array. A008288 is equivalent to the (1,1,1)-array. Rows include A017077, A081593, A081594. Coefficients of the row polynomials in the Newton basis are given by A013614.

Examples

			Rows begin
  1,  1,   1,    1,     1, ... A000012;
  1,  9,  17,   25,    33, ... A017077;
  1, 17,  97,  241,   449, ... A081593;
  1, 25, 241, 1161,  3297, ...
  1, 33, 449, 3297, 14721, ...
Triangle begins:
  1;
  1,  1;
  1,  9,    1;
  1, 17,   17,    1;
  1, 25,   97,   25,     1;
  1, 33,  241,  241,    33,    1;
  1, 41,  449, 1161,   449,   41,    1;
  1, 49,  721, 3297,  3297,  721,   49,  1;
  1, 57, 1057, 7161, 14721, 7161, 1057, 57, 1;
		

Crossrefs

Cf. Pascal (1,m,1) array: A123562 (m = -3), A098593 (m = -2), A000012 (m = -1), A007318 (m = 0), A008288 (m = 1), A081577 (m = 2), A081578 (m = 3), A081579 (m = 4), A081580 (m = 5), A081581 (m = 6), A143683 (m = 8).

Programs

  • Magma
    A081582:= func< n,k,q | (&+[Binomial(k, j)*Binomial(n-j, k)*q^j: j in [0..n-k]]) >;
    [A081582(n,k,7): k in [0..n], n in [0..12]]; // G. C. Greubel, May 26 2021
    
  • Mathematica
    Table[ Hypergeometric2F1[-k, k-n, 1, 8], {n,0,10}, {k,0,n}]//Flatten (* Jean-François Alcover, May 24 2013 *)
  • Sage
    flatten([[hypergeometric([-k, k-n], [1], 8).simplify() for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 26 2021

Formula

T(n,k) = Sum_{j = 0..n-k} binomial(n-k,j)*binomial(k,j)*8^j.
Riordan array (1/(1 - x), x*(1 + 7*x)/(1 - x)).
Square array T(n, k) defined by T(n, 0) = T(0, k)=1, T(n, k) = T(n, k-1) + 7*T(n-1, k-1) + T(n-1, k).
Rows are the expansions of (1 + 7*x)^k/(1 - x)^(k+1).
T(n, k) = Hypergeometric2F1([-k, k-n], [1], 8). - Jean-François Alcover, May 24 2013
E.g.f. for the n-th subdiagonal, n = 0,1,2,..., equals exp(x)*P(n,x), where P(n,x) is the polynomial Sum_{k = 0..n} binomial(n,k)*(8*x)^k/k!. For example, the e.g.f. for the second subdiagonal is exp(x)*(1 + 16*x + 64*x^2/2) = 1 + 17*x + 97*x^2/2! + 241*x^3/3! + 449*x^4/4! + 721*x^5/5! + .... - Peter Bala, Mar 05 2017
Sum_{k=0..n} T(n, k) = A015519(n+1). - G. C. Greubel, May 26 2021

A081579 Pascal-(1,4,1) array.

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 11, 11, 1, 1, 16, 46, 16, 1, 1, 21, 106, 106, 21, 1, 1, 26, 191, 396, 191, 26, 1, 1, 31, 301, 1011, 1011, 301, 31, 1, 1, 36, 436, 2076, 3606, 2076, 436, 36, 1, 1, 41, 596, 3716, 9726, 9726, 3716, 596, 41, 1, 1, 46, 781, 6056, 21746, 33876, 21746, 6056, 781, 46, 1
Offset: 0

Views

Author

Paul Barry, Mar 23 2003

Keywords

Comments

One of a family of Pascal-like arrays. A007318 is equivalent to the (1,0,1)-array. A008288 is equivalent to the (1,1,1)-array. Rows include A016861, A081587, A081588. Coefficients of the row polynomials in the Newton basis are given by A013612.

Examples

			Square array begins as:
  1,  1,   1,    1,    1, ... A000012;
  1,  6,  11,   16,   21, ... A016861;
  1, 11,  46,  106,  191, ... A081587;
  1, 16, 106,  396, 1011, ... A081588;
  1, 21, 191, 1011, 3606, ...
As triangle this begins:
  1;
  1,  1;
  1,  6,   1;
  1, 11,  11,    1;
  1, 16,  46,   16,     1;
  1, 21, 106,  106,    21,     1;
  1, 26, 191,  396,   191,    26,     1;
  1, 31, 301, 1011,  1011,   301,    31,    1;
  1, 36, 436, 2076,  3606,  2076,   436,   36,   1;
  1, 41, 596, 3716,  9726,  9726,  3716,  596,  41,  1;
  1, 46, 781, 6056, 21746, 33876, 21746, 6056, 781, 46, 1; - _Philippe Deléham_, Mar 15 2014
		

Crossrefs

Cf. Pascal (1,m,1) array: A123562 (m = -3), A098593 (m = -2), A000012 (m = -1), A007318 (m = 0), A008288 (m = 1), A081577 (m = 2), A081578 (m = 3), A081580 (m = 5), A081581 (m = 6), A081582 (m = 7), A143683 (m = 8).

Programs

  • Magma
    A081579:= func< n,k,q | (&+[Binomial(k, j)*Binomial(n-j, k)*q^j: j in [0..n-k]]) >;
    [A081579(n,k,4): k in [0..n], n in [0..12]]; // G. C. Greubel, May 26 2021
    
  • Mathematica
    Table[Hypergeometric2F1[-k, k-n, 1, 5], {n,0,12}, {k,0,n}]//Flatten (* Jean-François Alcover, May 24 2013 *)
  • Sage
    flatten([[hypergeometric([-k, k-n], [1], 5).simplify() for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 26 2021

Formula

Square array T(n, k) defined by T(n, 0) = T(0, k) = 1, T(n, k) = T(n, k-1) + 4*T(n-1, k-1) + T(n-1, k).
Rows are the expansions of (1+4*x)^k/(1-x)^(k+1).
From Philippe Deléham, Mar 15 2014: (Start)
Riordan array (1/(1-x), x*(1+4*x)/(1-x)).
Sum_{k=0..n} T(n, k) = A063727(n). (End)
E.g.f. for the n-th subdiagonal of the triangle, n = 0,1,2,..., equals exp(x)*P(n,x), where P(n,x) is the polynomial Sum_{k = 0..n} binomial(n,k)*(5*x)^k/k!. For example, the e.g.f. for the second subdiagonal is exp(x)*(1 + 10*x + 25*x^2/2) = 1 + 11*x + 46*x^2/2! + 106*x^3/3! + 191*x^4/4! + 301*x^5/5! + .... - Peter Bala, Mar 05 2017
From G. C. Greubel, May 26 2021: (Start)
T(n, k, m) = Hypergeometric2F1([-k, k-n], [1], m+1), for m = 4.
T(n, k, m) = Sum_{j=0..n-k} binomial(k,j)*binomial(n-j,k)*m^j, for m = 4. (End)

A081580 Pascal-(1,5,1) array.

Original entry on oeis.org

1, 1, 1, 1, 7, 1, 1, 13, 13, 1, 1, 19, 61, 19, 1, 1, 25, 145, 145, 25, 1, 1, 31, 265, 595, 265, 31, 1, 1, 37, 421, 1585, 1585, 421, 37, 1, 1, 43, 613, 3331, 6145, 3331, 613, 43, 1, 1, 49, 841, 6049, 17401, 17401, 6049, 841, 49, 1, 1, 55, 1105, 9955, 40105, 65527, 40105, 9955, 1105, 55, 1
Offset: 0

Views

Author

Paul Barry, Mar 23 2003

Keywords

Comments

One of a family of Pascal-like arrays. A007318 is equivalent to the (1,0,1)-array. A008288 is equivalent to the (1,1,1)-array. Rows include A016921, A081589, A081590. Coefficients of the row polynomials in the Newton basis are given by A013613.

Examples

			Square array begins as:
  1,  1,   1,    1,    1, ... A000012;
  1,  7,  13,   19,   25, ... A016921;
  1, 13,  61,  145,  265, ... A081589;
  1, 19, 145,  595, 1585, ... A081590;
  1, 25, 265, 1585, 6145, ...
The triangle begins as:
  1;
  1,  1;
  1,  7,    1;
  1, 13,   13,    1;
  1, 19,   61,   19,     1;
  1, 25,  145,  145,    25,     1;
  1, 31,  265,  595,   265,    31,     1;
  1, 37,  421, 1585,  1585,   421,    37,    1;
  1, 43,  613, 3331,  6145,  3331,   613,   43,    1;
  1, 49,  841, 6049, 17401, 17401,  6049,  841,   49,  1;
  1, 55, 1105, 9955, 40105, 65527, 40105, 9955, 1105, 55, 1; - _Philippe Deléham_, Mar 15 2014
		

Crossrefs

Cf. Pascal (1,m,1) array: A123562 (m = -3), A098593 (m = -2), A000012 (m = -1), A007318 (m = 0), A008288 (m = 1), A081577 (m = 2), A081578 (m = 3), A081579 (m = 4), A081581 (m = 6), A081582 (m = 7), A143683 (m = 8).

Programs

  • Magma
    A081580:= func< n,k,q | (&+[Binomial(k, j)*Binomial(n-j, k)*q^j: j in [0..n-k]]) >;
    [A081580(n,k,5): k in [0..n], n in [0..12]]; // G. C. Greubel, May 26 2021
    
  • Mathematica
    Table[Hypergeometric2F1[-k, k-n, 1, 6], {n,0,10}, {k,0,n}]//Flatten (* Jean-François Alcover, May 24 2013 *)
  • Sage
    flatten([[hypergeometric([-k, k-n], [1], 6).simplify() for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 26 2021

Formula

Square array T(n, k) defined by T(n, 0) = T(0, k) = 1, T(n, k) = T(n, k-1) + 5*T(n-1, k-1) + T(n-1, k).
Rows are the expansions of (1+5*x)^k/(1-x)^(k+1).
From Paul Barry, Aug 28 2008: (Start)
Number triangle T(n,k) = Sum_{j=0..n-k} binomial(n-k,j)*binomial(k,j)*5^j.
Riordan array (1/(1-x), x*(1+5*x)/(1-x)). (End)
T(n, k) = Hypergeometric2F1([-k, k-n], [1], 6). - Jean-François Alcover, May 24 2013
E.g.f. for the n-th subdiagonal, n = 0,1,2,..., equals exp(x)*P(n,x), where P(n,x) is the polynomial Sum_{k = 0..n} binomial(n,k)*(6*x)^k/k!. For example, the e.g.f. for the second subdiagonal is exp(x)*(1 + 12*x + 36*x^2/2) = 1 + 13*x + 61*x^2/2! + 145*x^3/3! + 265*x^4/4! + 421*x^5/5! + .... - Peter Bala, Mar 05 2017
Sum_{k=0..n} T(n, k, 3) = A002532(n+1). - G. C. Greubel, May 26 2021

A081581 Pascal-(1,6,1) array.

Original entry on oeis.org

1, 1, 1, 1, 8, 1, 1, 15, 15, 1, 1, 22, 78, 22, 1, 1, 29, 190, 190, 29, 1, 1, 36, 351, 848, 351, 36, 1, 1, 43, 561, 2339, 2339, 561, 43, 1, 1, 50, 820, 5006, 9766, 5006, 820, 50, 1, 1, 57, 1128, 9192, 28806, 28806, 9192, 1128, 57, 1, 1, 64, 1485, 15240, 68034, 116208, 68034, 15240, 1485, 64, 1
Offset: 0

Views

Author

Paul Barry, Mar 23 2003

Keywords

Comments

One of a family of Pascal-like arrays. A007318 is equivalent to the (1,0,1)-array. A008288 is equivalent to the (1,1,1)-array. Rows include A016993, A081591, A081592. Coefficients of the row polynomials in the Newton basis are given by A013614.

Examples

			Rows start as:
  1,  1,   1,    1,    1, ... A000012;
  1,  8,  15,   22,   29, ... A016993;
  1, 15,  78,  190,  351, ... A081591;
  1, 22, 190,  848, 2339, ...
  1, 29, 351, 2339, 9766, ...
The triangle starts as:
  1;
  1,  1;
  1,  8,   1;
  1, 15,  15,    1;
  1, 22,  78,   22,    1;
  1, 29, 190,  190,   29,   1;
  1, 36, 351,  848,  351,  36,  1;
  1, 43, 561, 2339, 2339, 561, 43, 1;
		

Crossrefs

Cf. Pascal (1,m,1) array: A123562 (m = -3), A098593 (m = -2), A000012 (m = -1), A007318 (m = 0), A008288 (m = 1), A081577 (m = 2), A081578 (m = 3), A081579 (m = 4), A081580 (m = 5), A081582 (m = 7), A143683 (m = 8).

Programs

  • Magma
    A081581:= func< n,k,q | (&+[Binomial(k, j)*Binomial(n-j, k)*q^j: j in [0..n-k]]) >;
    [A081581(n,k,6): k in [0..n], n in [0..12]]; // G. C. Greubel, May 26 2021
    
  • Mathematica
    Table[Hypergeometric2F1[-k, k-n, 1, 7], {n,0,10}, {k,0,n}]//Flatten (* Jean-François Alcover, May 24 2013 *)
  • PARI
    t(n, k) = sum(j=0, n-k, binomial(n-k, j)*binomial(k, j)*7^j) \\ Michel Marcus, May 24 2013
    
  • Sage
    flatten([[hypergeometric([-k, k-n], [1], 7).simplify() for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 26 2021

Formula

Square array T(n, k) defined by T(n, 0) = T(0, k) = 1, T(n, k) = T(n, k-1) + 6*T(n-1, k-1) + T(n-1, k).
Rows are the expansions of (1+6*x)^k/(1-x)^(k+1).
T(n, k) = Hypergeometric2F1([-k, k-n], [1], 7). - Jean-François Alcover, May 24 2013
E.g.f. for the n-th subdiagonal, n = 0,1,2,..., equals exp(x)*P(n,x), where P(n,x) is the polynomial Sum_{k = 0..n} binomial(n,k)*(7*x)^k/k!. For example, the e.g.f. for the second subdiagonal is exp(x)*(1 + 14*x + 49*x^2/2) = 1 + 15*x + 78*x^2/2! + 190*x^3/3! + 351*x^4/4! + 561*x^5/5! + .... - Peter Bala, Mar 05 2017
From G. C. Greubel, May 26 2021: (Start)
T(n, k, m) = Sum_{j=0..n-k} binomial(k,j)*binomial(n-j,k)*m^j, for m = 6.
Sum_{k=0..n} T(n, k, 6) = A083099(n+1). (End)

A144432 Triangle, T(n, k), read by rows: T(n, k) = t(n, k)^2 - t(n, k) - 1, where t(n,k) = (m*(n-k) + 1)*t(n-1, k-1) + (m*k - (m-1))*t(n-1, k) and m = -1.

Original entry on oeis.org

-1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 5, 1, 5, -1, -1, 11, 1, 1, 11, -1, -1, 19, 41, 71, 41, 19, -1, -1, 29, 71, 29, 29, 71, 29, -1, -1, 41, 239, 701, 869, 701, 239, 41, -1, -1, 55, 379, 811, 181, 181, 811, 379, 55, -1
Offset: 1

Views

Author

Roger L. Bagula, Oct 04 2008

Keywords

Examples

			Triangle begins as:
  -1;
  -1, -1;
  -1, -1,  -1;
  -1,  1,   1,  -1;
  -1,  5,   1,   5,  -1;
  -1, 11,   1,   1,  11,  -1;
  -1, 19,  41,  71,  41,  19,  -1;
  -1, 29,  71,  29,  29,  71,  29,  -1;
  -1, 41, 239, 701, 869, 701, 239,  41, -1;
  -1, 55, 379, 811, 181, 181, 811, 379, 55, -1;
		

Crossrefs

Programs

  • Mathematica
    t[n_, k_, m_]:= t[n, k, m]= If[k==1 || k==n, 1, (m*(n-k)+1)*t[n-1,k-1,m] + (m*(k - 1)+1)*t[n-1,k,m]];
    T[n_, k_, m_]:= t[n,k,m]^2 -t[n,k,m] -1;
    Table[T[n,k,-1], {n,15}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 02 2022 *)
  • Sage
    def t(n,k):
        if (n<3): return 1
        else: return (-1)^(k-1)*binomial(n-3, k-1) + (-1)^(n+k)*binomial(n-3, k-3)
    def A144432(n,k): return t(n,k)^2 - t(n,k) - 1
    flatten([[A144432(n,k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Mar 02 2022

Formula

T(n, k) = t(n, k)^2 - t(n, k) - 1, where t(n,k) = (m*(n-k) + 1)*t(n-1, k-1) + (m*k - (m-1))*t(n-1, k) and m = -1.
From G. C. Greubel, Mar 02 2022: (Start)
T(n, n-k) = T(n, k).
T(n, k) = t(n,k)^2 - t(n,k) - 1, where t(n,k) = (-1)^(k-1)*binomial(n-3, k-1) + (-1)^(n+k)*binomial(n-3, k-3) with t(1, k) = t(2, k) = 1.
Sum_{k=1..n} T(n,k) = -n*[n<4] + ( 2*binomial(2*n-6, n-3)*(binomial(n-1,2) - (-1)^n*binomial(n-3,2))/binomial(n-1,2) - n )*[n>=4]. (End)

Extensions

Edited by G. C. Greubel, Mar 02 2022

A123562 Pascal-(1,-3,1) array, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, -1, 1, 1, -3, -3, 1, 1, -5, -3, -5, 1, 1, -7, 1, 1, -7, 1, 1, -9, 9, 11, 9, -9, 1, 1, -11, 21, 17, 17, 21, -11, 1, 1, -13, 37, 11, 1, 11, 37, -13, 1, 1, -15, 57, -15, -39, -39, -15, 57, -15, 1, 1, -17, 81, -69, -87, -81, -87, -69, 81, -17, 1
Offset: 0

Views

Author

Philippe Deléham, Nov 12 2006

Keywords

Comments

Riordan array (1/(1-x), x*(1-3x)/(1-x)).

Examples

			Triangle begins:
  1;
  1,   1;
  1,  -1,   1;
  1,  -3,  -3,   1;
  1,  -5,  -3,  -5,   1;
  1,  -7,   1,   1,  -7,   1;
  1,  -9,   9,  11,   9,  -9,  1;
  1, -11,  21,  17,  17,  21, -11,   1;
  1, -13,  37,  11,   1,  11,  37, -13,   1;
		

Crossrefs

Cf. Pascal (1,m,1) array: A098593 (m = -2), A000012 (m = -1), A007318 (m = 0), A008288 (m = 1), A081577 (m = 2), A081578 (m = 3), A081579 (m = 4), A081580 (m = 5), A081581 (m = 6), A081582 (m = 7), A143683 (m = 8).

Programs

  • Mathematica
    T[n_, k_] := Sum[Binomial[n - j, k]*Binomial[k, j]*(-3)^j, {j, 0, n}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Oct 15 2017 *)
  • PARI
    for(n=0,10, for(k=0,n, print1(sum(j=0,n, binomial(n-j,k)*  binomial(k,j)*(-3)^j), ", "))) \\ G. C. Greubel, Oct 15 2017

Formula

Sum_{k=0..n} T(n,k) = A088137(n+1).
T(n,k) = T(n-1,k-1) + T(n-1,k) - 3*T(n-2,k-1), n>0.
From Paul Barry, Jan 24 2011: (Start)
T(n,k) = Sum_{j=0..n} binomial(n-j,k)*binomial(k,j)*(-3)^j.
T(n,k) = [k<=n]*Hypergeometric2F1(-k,k-n,1,-2). (End)
E.g.f. for the n-th subdiagonal: exp(x)*P(n,x), where P(n,x) is the polynomial Sum_{k = 0..n} binomial(n,k)*(-2*x)^k/k!. For example, the e.g.f. for the second subdiagonal is exp(x)*(1 - 4*x + 4*x^2/2) = 1 - 3*x - 3*x^2/2! + x^3/3! + 9*x^4/4! + 21*x^5/5! + .... - Peter Bala, Mar 05 2017
Showing 1-10 of 14 results. Next