A144435
Triangle T(n, k) = (m*(n-k) + 1)*T(n-1, k-1) + (m*(k-1) + 1)*T(n-1, k) + j*T(n-2, k-1), where T(n, 1) = T(n, n) = 1, m = -1, and j = 2, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 0, 2, 0, 1, 1, -1, 0, 0, -1, 1, 1, -2, 3, 4, 3, -2, 1, 1, -3, 3, -17, -17, 3, -3, 1, 1, -4, 8, 28, 110, 28, 8, -4, 1, 1, -5, 10, -90, -476, -476, -90, 10, -5, 1
Offset: 1
Triangle begins as:
1;
1, 1;
1, 2, 1;
1, 1, 1, 1;
1, 0, 2, 0, 1;
1, -1, 0, 0, -1, 1;
1, -2, 3, 4, 3, -2, 1;
1, -3, 3, -17, -17, 3, -3, 1;
1, -4, 8, 28, 110, 28, 8, -4, 1;
1, -5, 10, -90, -476, -476, -90, 10, -5, 1;
-
T[n_, k_, m_, j_]:= T[n, k, m, j]= If[k==1 || k==n, 1, (m*(n-k)+1)*T[n-1, k-1, m, j] + (m*(k-1)+1)*T[n-1, k, m, j] + j*T[n-2, k-1, m, j] ];
Table[T[n,k,-1,2], {n,15}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 03 2022 *)
-
def T(n,k,m,j):
if (k==1 or k==n): return 1
else: return (m*(n-k)+1)*T(n-1,k-1,m,j) + (m*(k-1)+1)*T(n-1,k,m,j) + j*T(n-2,k-1,m,j)
def A144435(n,k): return T(n,k,-1,2)
flatten([[A144435(n,k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Mar 03 2022
A144436
Triangle T(n, k) = (m*(n-k) + 1)*T(n-1, k-1) + (m*(k-1) + 1)*T(n-1, k) + j*T(n-2, k-1), where T(n, 1) = T(n, n) = 1, m = 1, and j = 4, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 8, 1, 1, 23, 23, 1, 1, 54, 170, 54, 1, 1, 117, 818, 818, 117, 1, 1, 244, 3255, 7224, 3255, 244, 1, 1, 499, 11697, 48443, 48443, 11697, 499, 1, 1, 1010, 39560, 276974, 513326, 276974, 39560, 1010, 1, 1, 2033, 128756, 1431604, 4422246
Offset: 1
Triangle begins as:
1;
1, 1;
1, 8, 1;
1, 23, 23, 1;
1, 54, 170, 54, 1;
1, 117, 818, 818, 117, 1;
1, 244, 3255, 7224, 3255, 244, 1;
1, 499, 11697, 48443, 48443, 11697, 499, 1;
1, 1010, 39560, 276974, 513326, 276974, 39560, 1010, 1;
1, 2033, 128756, 1431604, 4422246, 4422246, 1431604, 128756, 2033, 1;
-
T[n_, k_, m_, j_]:= T[n,k,m,j]= If[k==1 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m,j] + (m*(k-1)+1)*T[n-1,k,m,j] + j*T[n-2,k-1,m,j] ];
Table[T[n,k,1,4], {n,15}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 03 2022 *)
-
def T(n,k,m,j):
if (k==1 or k==n): return 1
else: return (m*(n-k)+1)*T(n-1,k-1,m,j) + (m*(k-1)+1)*T(n-1,k,m,j) + j*T(n-2,k-1,m,j)
def A144436(n,k): return T(n,k,1,4)
flatten([[A144436(n,k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Mar 03 2022
A144438
Triangle T(n,k) by rows: T(n, k) = (n-k+1)*T(n-1, k-1) + k*T(n-1, k) + T(n-2, k-1) with T(n, 1) = T(n, n) = 1.
Original entry on oeis.org
1, 1, 1, 1, 5, 1, 1, 14, 14, 1, 1, 33, 89, 33, 1, 1, 72, 413, 413, 72, 1, 1, 151, 1632, 3393, 1632, 151, 1, 1, 310, 5874, 22145, 22145, 5874, 310, 1, 1, 629, 19943, 125456, 224843, 125456, 19943, 629, 1, 1, 1268, 65171, 647299, 1899096, 1899096, 647299, 65171, 1268, 1
Offset: 1
Triangle begins as:
1;
1, 1;
1, 5, 1;
1, 14, 14, 1;
1, 33, 89, 33, 1;
1, 72, 413, 413, 72, 1;
1, 151, 1632, 3393, 1632, 151, 1;
1, 310, 5874, 22145, 22145, 5874, 310, 1;
1, 629, 19943, 125456, 224843, 125456, 19943, 629, 1;
1, 1268, 65171, 647299, 1899096, 1899096, 647299, 65171, 1268, 1;
-
T[n_, k_, m_, j_]:= T[n,k,m,j]= If[k==1 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m,j] + (m*(k-1)+1)*T[n-1,k,m,j] + j*T[n-2,k-1,m,j]];
Table[T[n,k,1,1], {n,15}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 03 2022 *)
-
def T(n,k,m,j):
if (k==1 or k==n): return 1
else: return (m*(n-k)+1)*T(n-1,k-1,m,j) + (m*(k-1)+1)*T(n-1,k,m,j) + j*T(n-2,k-1,m,j)
def A144438(n,k): return T(n,k,1,1)
flatten([[A144438(n,k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Mar 03 2022
A144439
Triangle T(n, k) = (m*(n-k) + 1)*T(n-1, k-1) + (m*(k-1) + 1)*T(n-1, k) + j*T(n-2, k-1), where T(n, 1) = T(n, n) = 1, m = 2, and j = 2, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 8, 1, 1, 31, 31, 1, 1, 102, 326, 102, 1, 1, 317, 2406, 2406, 317, 1, 1, 964, 15087, 34336, 15087, 964, 1, 1, 2907, 86673, 380947, 380947, 86673, 2907, 1, 1, 8738, 473084, 3650206, 6925718, 3650206, 473084, 8738, 1, 1, 26233, 2502304, 31874880, 103245622, 103245622, 31874880, 2502304, 26233, 1
Offset: 1
Triangle begins as:
1;
1, 1;
1, 8, 1;
1, 31, 31, 1;
1, 102, 326, 102, 1;
1, 317, 2406, 2406, 317, 1;
1, 964, 15087, 34336, 15087, 964, 1;
1, 2907, 86673, 380947, 380947, 86673, 2907, 1;
1, 8738, 473084, 3650206, 6925718, 3650206, 473084, 8738, 1;
1, 26233, 2502304, 31874880, 103245622, 103245622, 31874880, 2502304, 26233, 1;
Cf.
A144431,
A144432,
A144435,
A144436,
A144438,
A144440,
A144441,
A144442,
A144443,
A144444,
A144445,
A144446,
A144447.
-
T[n_, k_, m_, j_]:= T[n,k,m,j]= If[k==1 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m,j] + (m*(k-1)+1)*T[n-1,k,m,j] + j*T[n-2,k-1,m,j]];
Table[T[n,k,2,2], {n,15}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 10 2022 *)
-
def T(n,k,m,j):
if (k==1 or k==n): return 1
else: return (m*(n-k)+1)*T(n-1,k-1,m,j) + (m*(k-1)+1)*T(n-1,k,m,j) + j*T(n-2,k-1,m,j)
def A144439(n,k): return T(n,k,2,2)
flatten([[A144439(n,k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Mar 10 2022
A144440
Triangle T(n,k) by rows: T(n, k) = (3*n-3*k+1)*T(n-1, k-1) +(3*k-2)*T(n-1, k) + 3*T(n-2, k-1) with T(n, 1) = T(n, n) = 1.
Original entry on oeis.org
1, 1, 1, 1, 11, 1, 1, 54, 54, 1, 1, 229, 789, 229, 1, 1, 932, 7975, 7975, 932, 1, 1, 3747, 68628, 161867, 68628, 3747, 1, 1, 15010, 543144, 2534759, 2534759, 543144, 15010, 1, 1, 60065, 4098439, 34243778, 66389335, 34243778, 4098439, 60065, 1
Offset: 1
Triangle begins as:
1;
1, 1;
1, 11, 1;
1, 54, 54, 1;
1, 229, 789, 229, 1;
1, 932, 7975, 7975, 932, 1;
1, 3747, 68628, 161867, 68628, 3747, 1;
1, 15010, 543144, 2534759, 2534759, 543144, 15010, 1;
1, 60065, 4098439, 34243778, 66389335, 34243778, 4098439, 60065, 1;
Cf.
A144431,
A144432,
A144435,
A144436,
A144438,
A144439,
A144441,
A144442,
A144443,
A144444,
A144445.
-
T[n_, k_, m_, j_]:= T[n,k,m,j]= If[k==1 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m,j] + (m*(k-1)+1)*T[n-1,k,m,j] + j*T[n-2,k-1,m,j] ];
Table[T[n,k,3,3], {n,15}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 03 2022 *)
-
def T(n,k,m,j):
if (k==1 or k==n): return 1
else: return (m*(n-k)+1)*T(n-1,k-1,m,j) + (m*(k-1)+1)*T(n-1,k,m,j) + j*T(n-2,k-1,m,j)
def A144440(n,k): return T(n,k,3,3)
flatten([[A144440(n,k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Mar 03 2022
A144441
Triangle T(n,k) read by rows: T(n, k) = (4*n-4*k+1)*T(n-1, k-1) + (4*k-3)*T(n-1, k) + 4*T(n-2, k-1) with T(n, 1) = T(n, n) = 1.
Original entry on oeis.org
1, 1, 1, 1, 14, 1, 1, 83, 83, 1, 1, 432, 1550, 432, 1, 1, 2181, 19898, 19898, 2181, 1, 1, 10930, 217887, 523548, 217887, 10930, 1, 1, 54679, 2199237, 10589795, 10589795, 2199237, 54679, 1, 1, 273428, 21203828, 184722860, 362147222, 184722860, 21203828, 273428, 1
Offset: 1
Triangle begins as:
1;
1, 1;
1, 14, 1;
1, 83, 83, 1;
1, 432, 1550, 432, 1;
1, 2181, 19898, 19898, 2181, 1;
1, 10930, 217887, 523548, 217887, 10930, 1;
1, 54679, 2199237, 10589795, 10589795, 2199237, 54679, 1;
1, 273428, 21203828, 184722860, 362147222, 184722860, 21203828, 273428, 1;
Cf.
A144431,
A144432,
A144435,
A144436,
A144438,
A144439,
A144440,
A144442,
A144443,
A144444,
A144445.
-
T[n_, k_, m_, j_]:= T[n,k,m,j]= If[k==1 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m,j] + (m*(k-1)+1)*T[n-1,k,m,j] + j*T[n-2,k-1,m,j]];
Table[T[n,k,4,4], {n,15}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 03 2022 *)
-
def T(n,k,m,j):
if (k==1 or k==n): return 1
else: return (m*(n-k)+1)*T(n-1,k-1,m,j) + (m*(k-1)+1)*T(n-1,k,m,j) + j*T(n-2,k-1,m,j)
def A144441(n,k): return T(n,k,4,4)
flatten([[A144441(n,k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Mar 03 2022
A144442
Triangle read by rows: T(n, k) = (5*n-5*k+1)*T(n-1, k-1) +(5*k-4)*T(n-1, k) + 5*T(n-2, k-1) with T(n, 1) = T(n, n) = 1.
Original entry on oeis.org
1, 1, 1, 1, 17, 1, 1, 118, 118, 1, 1, 729, 2681, 729, 1, 1, 4400, 41745, 41745, 4400, 1, 1, 26431, 555240, 1349245, 555240, 26431, 1, 1, 158622, 6816846, 33456685, 33456685, 6816846, 158622, 1, 1, 951773, 80034743, 715321156, 1411926995, 715321156, 80034743, 951773, 1
Offset: 1
Triangle begins as:
1;
1, 1;
1, 17, 1;
1, 118, 118, 1;
1, 729, 2681, 729, 1;
1, 4400, 41745, 41745, 4400, 1;
1, 26431, 555240, 1349245, 555240, 26431, 1;
1, 158622, 6816846, 33456685, 33456685, 6816846, 158622, 1;
1, 951773, 80034743, 715321156, 1411926995, 715321156, 80034743, 951773, 1;
Cf.
A144431,
A144432,
A144435,
A144436,
A144438,
A144439,
A144440,
A144441,
A144443,
A144444,
A144445.
-
T[n_, k_, m_, j_]:= T[n,k,m,j]= If[k==1 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m,j] + (m*(k-1)+1)*T[n-1,k,m,j] + j*T[n-2,k-1,m,j]];
Table[T[n,k,5,5], {n,12}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 03 2022 *)
-
def T(n,k,m,j):
if (k==1 or k==n): return 1
else: return (m*(n-k)+1)*T(n-1,k-1,m,j) + (m*(k-1)+1)*T(n-1,k,m,j) + j*T(n-2,k-1,m,j)
def A144442(n,k): return T(n,k,5,5)
flatten([[A144442(n,k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Mar 03 2022
A144443
Triangle read by rows: T(n, k) = (6*n-6*k+1)*T(n-1, k-1) + (6*k-5)*T(n-1, k) + 6*T(n-2, k-1) with T(n, 1) = T(n, n) = 1.
Original entry on oeis.org
1, 1, 1, 1, 20, 1, 1, 159, 159, 1, 1, 1138, 4254, 1138, 1, 1, 7997, 77878, 77878, 7997, 1, 1, 56016, 1219167, 2984888, 1219167, 56016, 1, 1, 392155, 17633649, 87659315, 87659315, 17633649, 392155, 1, 1, 2745134, 244083268, 2219485106, 4400875078, 2219485106, 244083268, 2745134, 1
Offset: 1
Triangle begins as:
1;
1, 1;
1, 20, 1;
1, 159, 159, 1;
1, 1138, 4254, 1138, 1;
1, 7997, 77878, 77878, 7997, 1;
1, 56016, 1219167, 2984888, 1219167, 56016, 1;
1, 392155, 17633649, 87659315, 87659315, 17633649, 392155, 1;
Cf.
A144431,
A144432,
A144435,
A144436,
A144438,
A144439,
A144440,
A144441,
A144442,
A144444,
A144445.
-
T[n_, k_, m_, j_]:= T[n,k,m,j]= If[k==1 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m,j] + (m*(k-1)+1)*T[n-1,k,m,j] + j*T[n-2,k-1,m,j]];
Table[T[n,k,6,6], {n,15}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 04 2022 *)
-
def T(n,k,m,j):
if (k==1 or k==n): return 1
else: return (m*(n-k)+1)*T(n-1,k-1,m,j) + (m*(k-1)+1)*T(n-1,k,m,j) + j*T(n-2,k-1,m,j)
def A144443(n,k): return T(n,k,6,6)
flatten([[A144443(n,k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Mar 04 2022
A144444
Triangle read by rows: T(n, k) = (1-n+k)*T(n-1, k-1) + (2-k)*T(n-1, k) - T(n-2, k-1) with T(n, 1) = T(n, n) = 1.
Original entry on oeis.org
1, 1, 1, 1, -1, 1, 1, -2, -2, 1, 1, -3, 5, -3, 1, 1, -4, 3, 3, -4, 1, 1, -5, 12, -17, 12, -5, 1, 1, -6, 12, -5, -5, 12, -6, 1, 1, -7, 23, -50, 47, -50, 23, -7, 1, 1, -8, 25, -27, 64, 64, -27, 25, -8, 1
Offset: 1
Triangle begins as:
1;
1, 1;
1, -1, 1;
1, -2, -2, 1;
1, -3, 5, -3, 1;
1, -4, 3, 3, -4, 1;
1, -5, 12, -17, 12, -5, 1;
1, -6, 12, -5, -5, 12, -6, 1;
1, -7, 23, -50, 47, -50, 23, -7, 1;
1, -8, 25, -27, 64, 64, -27, 25, -8, 1;
Cf.
A144431,
A144432,
A144435,
A144436,
A144438,
A144439,
A144440,
A144441,
A144442,
A144443,
A144445.
-
T[n_, k_, m_, j_]:= T[n,k,m,j]= If[k==1 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m,j] + (m*(k-1)+1)*T[n-1,k,m,j] + j*T[n-2,k-1,m,j]];
Table[T[n,k,-1,-1], {n,15}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 04 2022 *)
-
def T(n,k,m,j):
if (k==1 or k==n): return 1
else: return (m*(n-k)+1)*T(n-1,k-1,m,j) + (m*(k-1)+1)*T(n-1,k,m,j) + j*T(n-2,k-1,m,j)
def A144444(n,k): return T(n,k,-1,-1)
flatten([[A144444(n,k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Mar 04 2022
A144445
Triangle, read by rows, T(n,k) = (7*n-7*k+1)*T(n-1, k-2) + (7*k-6)*T(n-1, k) + 7*T(n-2, k-1) with T(n, 1) = T(n, n) = 1.
Original entry on oeis.org
1, 1, 1, 1, 23, 1, 1, 206, 206, 1, 1, 1677, 6341, 1677, 1, 1, 13452, 133451, 133451, 13452, 1, 1, 107659, 2403612, 5916231, 2403612, 107659, 1, 1, 861322, 40024068, 200795987, 200795987, 40024068, 861322, 1, 1, 6890633, 638151479, 5875203446, 11687580863, 5875203446, 638151479, 6890633, 1
Offset: 1
Triangle begins as:
1;
1, 1;
1, 23, 1;
1, 206, 206, 1;
1, 1677, 6341, 1677, 1;
1, 13452, 133451, 133451, 13452, 1;
1, 107659, 2403612, 5916231, 2403612, 107659, 1;
1, 861322, 40024068, 200795987, 200795987, 40024068, 861322, 1;
Cf.
A144431,
A144432,
A144435,
A144436,
A144438,
A144439,
A144440,
A144441,
A144442,
A144443,
A144444.
-
T[n_, k_, m_, j_]:= T[n,k,m,j]= If[k==1 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m,j] + (m*(k-1)+1)*T[n-1,k,m,j] + j*T[n-2,k-1,m,j] ];
Table[T[n,k,7,7], {n,15}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 04 2022 *)
-
def T(n,k,m,j):
if (k==1 or k==n): return 1
else: return (m*(n-k)+1)*T(n-1,k-1,m,j) + (m*(k-1)+1)*T(n-1,k,m,j) + j*T(n-2,k-1,m,j)
def A144445(n,k): return T(n,k,7,7)
flatten([[A144445(n,k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Mar 04 2022
Showing 1-10 of 11 results.