A144436 Triangle T(n, k) = (m*(n-k) + 1)*T(n-1, k-1) + (m*(k-1) + 1)*T(n-1, k) + j*T(n-2, k-1), where T(n, 1) = T(n, n) = 1, m = 1, and j = 4, read by rows.
1, 1, 1, 1, 8, 1, 1, 23, 23, 1, 1, 54, 170, 54, 1, 1, 117, 818, 818, 117, 1, 1, 244, 3255, 7224, 3255, 244, 1, 1, 499, 11697, 48443, 48443, 11697, 499, 1, 1, 1010, 39560, 276974, 513326, 276974, 39560, 1010, 1, 1, 2033, 128756, 1431604, 4422246
Offset: 1
Examples
Triangle begins as: 1; 1, 1; 1, 8, 1; 1, 23, 23, 1; 1, 54, 170, 54, 1; 1, 117, 818, 818, 117, 1; 1, 244, 3255, 7224, 3255, 244, 1; 1, 499, 11697, 48443, 48443, 11697, 499, 1; 1, 1010, 39560, 276974, 513326, 276974, 39560, 1010, 1; 1, 2033, 128756, 1431604, 4422246, 4422246, 1431604, 128756, 2033, 1;
Links
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
Programs
-
Mathematica
T[n_, k_, m_, j_]:= T[n,k,m,j]= If[k==1 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m,j] + (m*(k-1)+1)*T[n-1,k,m,j] + j*T[n-2,k-1,m,j] ]; Table[T[n,k,1,4], {n,15}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 03 2022 *)
-
Sage
def T(n,k,m,j): if (k==1 or k==n): return 1 else: return (m*(n-k)+1)*T(n-1,k-1,m,j) + (m*(k-1)+1)*T(n-1,k,m,j) + j*T(n-2,k-1,m,j) def A144436(n,k): return T(n,k,1,4) flatten([[A144436(n,k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Mar 03 2022
Formula
T(n, k) = (m*(n-k) + 1)*T(n-1, k-1) + (m*(k-1) + 1)*T(n-1, k) + j*T(n-2, k-1), where T(n, 1) = T(n, n) = 1, m = 1, and j = 4.
From G. C. Greubel, Mar 03 2022: (Start)
T(n, n-k) = T(n, k).
T(n, 2) = 2^(n+1) - (n+5).
T(n, 3) = (1/2)*( n^2 + 9*n + 16 - 2^(n+2)*(n+3) + 142*3^(n-3) ). (End)
Extensions
Edited by G. C. Greubel, Mar 03 2022