cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A063496 a(n) = (2*n - 1)*(8*n^2 - 8*n + 3)/3.

Original entry on oeis.org

1, 19, 85, 231, 489, 891, 1469, 2255, 3281, 4579, 6181, 8119, 10425, 13131, 16269, 19871, 23969, 28595, 33781, 39559, 45961, 53019, 60765, 69231, 78449, 88451, 99269, 110935, 123481, 136939, 151341, 166719, 183105, 200531, 219029, 238631, 259369, 281275, 304381
Offset: 1

Views

Author

N. J. A. Sloane, Aug 01 2001

Keywords

Comments

Number of potential flows in a 2 X 2 matrix with integer velocities in -n..n, i.e., number of 2 X 2 matrices with adjacent elements differing by no more than n, counting matrices differing by a constant only once. - R. H. Hardin, Feb 27 2002
Number of ordered quadruples (a,b,c,d), -(n-1) <= a,b,c,d <= n-1, such that a+b+c+d = 0. - Benoit Cloitre, Jun 14 2003
If Y and Z are 2-blocks of a (2n+1)-set X then a(n-1) is the number of 5-subsets of X intersecting both Y and Z. - Milan Janjic, Oct 28 2007
Equals binomial transform of [1, 18, 48, 32, 0, 0, 0, ...]. - Gary W. Adamson, Jul 19 2008

Crossrefs

(1/12)*t*(2*n^3-3*n^2+n)+2*n-1 for t = 2, 4, 6, ... gives A049480, A005894, A063488, A001845, A063489, A005898, A063490, A057813, A063491, A005902, A063492, A005917, A063493, A063494, A063495, A063496.

Programs

  • Magma
    [(2*n-1)*(8*n^2-8*n+3)/3: n in [1..40]]; // Wesley Ivan Hurt, May 09 2014
  • Maple
    A063496:=n->(2*n-1)*(8*n^2-8*n+3)/3; seq(A063496(n), n=1..40); # Wesley Ivan Hurt, May 09 2014
  • Mathematica
    Table[(2*n - 1)*(8*n^2 - 8*n + 3)/3, {n, 40}] (* Wesley Ivan Hurt, May 09 2014 *)
    LinearRecurrence[{4,-6,4,-1}, {1,19,85,231}, 30] (* G. C. Greubel, Dec 01 2017 *)
  • PARI
    a(n) = { (2*n - 1)*(8*n^2 - 8*n + 3)/3 } \\ Harry J. Smith, Aug 23 2009
    
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace((-3+6*x+24*x^2+16*x^3)*exp(x)/3 + 1)) \\ G. C. Greubel, Dec 01 2017
    

Formula

From Peter Bala, Jul 18 2008: (Start)
The following remarks about the C_3 lattice assume the sequence offset is 0.
Partial sums of A010006. So this sequence is the crystal ball sequence for the C_3 lattice - row 3 of A142992. The lattice C_3 consists of all integer lattice points v = (a,b,c) in Z^3 such that a + b + c is even, equipped with the taxicab type norm ||v|| = (1/2) * (|a| + |b| + |c|).
The crystal ball sequence of C_3 gives the number of lattice points v in C_3 with ||v|| <= n for n = 0,1,2,3,... [Bacher et al.].
For example, a(1) = 19 because the origin has norm 0 and the 18 lattice points in Z^3 of norm 1 (as defined above) are +-(2,0,0), +-(0,2,0), +-(0,0,2), +-(1,1,0), +-(1,0,1), +-(0,1,1), +-(1,-1,0), +-(1,0,-1) and +-(0,1,-1). These 18 vectors form a root system of type C_3.
O.g.f.: x*(1 + 15*x + 15*x^2 + x^3)/(1 - x)^4 = x/(1 - x) * T(3, (1 + x)/(1 - x)), where T(n, x) denotes the Chebyshev polynomial of the first kind.
2*log(2) = 4/3 + Sum_{n >= 1} 1/(n*a(n)*a(n+1)). (End)
a(n+1) = (1/Pi) * Integral_{x=0..Pi} (sin((n+1/2)*x)/sin(x/2))^4. - Yalcin Aktar, Nov 02 2011, corrected by R. J. Mathar, Dec 01 2011
From G. C. Greubel, Dec 01 2017: (Start)
G.f.: x*(1 + 15*x + 15*x^2 + x^3)/(1 - x)^4.
E.g.f.: (-3 + 6*x + 24*x^2 + 16*x^3)*exp(x)/3 + 1. (End)
a(n) = A005900(2n-1). - Ivan N. Ianakiev, Mar 27 2022
From Peter Bala, Mar 11 2024: (Start)
Sum_{k = 1..n+1} 1/(k*a(k)*a(k+1)) = 1/(19 - 3/(27 - 60/(43 - 315/(67 - ... -n^2*(4*n^2 - 1)/((2*n + 1)^2 + 2*3^2))))).
E.g.f.: exp(x)*(1 + 18*x + 48*x^2/2! + 32*x^3/3!). Note that -T(6, i*sqrt(x)) = 1 + 18*x + 48*x^2 + 32*x^3, where T(n, x) denotes the n-th Chebyshev polynomial of the first kind. See A008310. (End)

A103884 Square array A(n,k) read by antidiagonals: row n gives coordination sequence for lattice C_n.

Original entry on oeis.org

1, 1, 8, 1, 18, 16, 1, 32, 66, 24, 1, 50, 192, 146, 32, 1, 72, 450, 608, 258, 40, 1, 98, 912, 1970, 1408, 402, 48, 1, 128, 1666, 5336, 5890, 2720, 578, 56, 1, 162, 2816, 12642, 20256, 14002, 4672, 786, 64, 1, 200, 4482, 27008, 59906, 58728, 28610, 7392, 1026, 72
Offset: 2

Views

Author

Ralf Stephan, Feb 20 2005

Keywords

Examples

			Array begins:
  1,   8,    16,     24,      32,       40,        48, ... A022144;
  1,  18,    66,    146,     258,      402,       578, ... A010006;
  1,  32,   192,    608,    1408,     2720,      4672, ... A019560;
  1,  50,   450,   1970,    5890,    14002,     28610, ... A019561;
  1,  72,   912,   5336,   20256,    58728,    142000, ... A019562;
  1,  98,  1666,  12642,   59906,   209762,    596610, ... A019563;
  1, 128,  2816,  27008,  157184,   658048,   2187520, ... A019564;
  1, 162,  4482,  53154,  374274,  1854882,   7159170, ... A035746;
  1, 200,  6800,  97880,  822560,  4780008,  21278640, ... A035747;
  1, 242,  9922, 170610, 1690370, 11414898,  58227906, ... A035748;
  1, 288, 14016, 284000, 3281280, 25534368, 148321344, ... A035749;
  ...
Antidiagonals, T(n, k), begins as:
  1;
  1,   8;
  1,  18,   16;
  1,  32,   66,   24;
  1,  50,  192,  146,   32;
  1,  72,  450,  608,  258,   40;
  1,  98,  912, 1970, 1408,  402,  48;
  1, 128, 1666, 5336, 5890, 2720, 578, 56;
		

Crossrefs

Programs

  • Magma
    A103884:= func< n,k | k eq 0 select 1 else 2*(&+[2^j*Binomial(n-k,j+1)*Binomial(2*k-1,j) : j in [0..2*k-1]]) >;
    [A103884(n,k): k in [0..n-2], n in [2..12]]; // G. C. Greubel, May 23 2023
    
  • Mathematica
    nmin = 2; nmax = 11; t[n_, 0]= 1; t[n_, k_]:= 2n*Hypergeometric2F1[1-2k, 1-n, 2, 2]; tnk= Table[ t[n, k], {n, nmin, nmax}, {k, 0, nmax-nmin}]; Flatten[ Table[ tnk[[ n-k+1, k ]], {n, 1, nmax-nmin+1}, {k, 1, n} ] ] (* Jean-François Alcover, Jan 24 2012, after formula *)
  • SageMath
    def A103884(n,k): return 1 if k==0 else 2*sum(2^j*binomial(n-k,j+1)*binomial(2*k-1,j) for j in range(2*k))
    flatten([[A103884(n,k) for k in range(n-1)] for n in range(2,13)]) # G. C. Greubel, May 23 2023

Formula

A(n,k) = Sum_{i=1..2*k} 2^i*C(n, i)*C(2*k-1, i-1), A(n,0) = 1 (array).
G.f. of n-th row: (Sum_{i=0..n} C(2*n, 2*i)*x^i)/(1-x)^n.
T(n, k) = A(n-k, k) (antidiagonals).
T(n, n-2) = A022144(n-2).
T(n, k) = 2*(n-k)*Hypergeometric2F1([1+k-n, 1-2*k], [2], 2), T(n, 0) = 1, for n >= 2, 0 <= k <= n-2. - G. C. Greubel, May 23 2023
From Peter Bala, Jul 09 2023: (Start)
T(n,k) = [x^k] Chebyshev_T(n, (1 + x)/(1 - x)), where Chebyshev_T(n, x) denotes the n-th Chebyshev polynomial of the first kind.
T(n+1,k) = T(n+1,k-1) + 2*T(n,k) + 2*T(n,k-1) + T(n-1,k) - T(n-1,k-1). (End)

Extensions

Definition clarified by N. J. A. Sloane, May 25 2023

A285043 Expansion of cosh(3*arctanh(2*sqrt(x))).

Original entry on oeis.org

1, 18, 102, 500, 2310, 10332, 45276, 195624, 836550, 3549260, 14965236, 62783448, 262303132, 1092063000, 4533175800, 18769219920, 77539370310, 319704052140, 1315894618500, 5407825361400, 22193291140020
Offset: 0

Views

Author

Peter Bala, Apr 09 2017

Keywords

Comments

Note that the function cosh(2*n*arctanh(sqrt(x))) is the o.g.f. for the coordination sequence of the C_n lattice. See, for example, A010006.
In A285043 through A285046 we consider sequences with o.g.f. cosh((2*n+1)*arctanh(2*sqrt(x))) for n = 1, 2, 3 and 4. For n = 0 we get the central binomial coefficients A000984.

Crossrefs

Programs

  • Maple
    seq((8*n + 1)*binomial(2*n,n), n = 0..20);
  • Mathematica
    CoefficientList[Series[Cosh[3*ArcTanh[2*Sqrt[x]]], {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 10 2017 *)
  • PARI
    my(x='x + O('x^30)); Vec((1 + 12*x)/(1 - 4*x)^(3/2)) \\ Indranil Ghosh, Apr 10 2017

Formula

a(n) = (8*n + 1)*binomial(2*n,n).
O.g.f. cosh(3*arctanh(2*sqrt(x))) = (1 + 12*x)/(1 - 4*x)^(3/2) = 1 + 18*x + 102*x^2 + 500*x^3 + ....
D-finite with recurrence: n*a(n) +2*(4*n-13)*a(n-1) +24*(-2*n+3)*a(n-2)=0. - R. J. Mathar, Jan 22 2020

A285046 Expansion of cosh(9*arctanh(2*sqrt(x))).

Original entry on oeis.org

1, 162, 4806, 71892, 758214, 6506172, 48783900, 332715240, 2115552582, 12745645484, 73577414196, 410265444888, 2222886926364, 11756568121560, 60911288332920, 310024235290320, 1553692427724870
Offset: 0

Views

Author

Peter Bala, Apr 10 2017

Keywords

Comments

Note that the function cosh(2*n*arctanh(sqrt(x))) is the o.g.f. for the coordination sequence of the C_n lattice. See, for example, A010006.
In A285043 through A285046 we consider sequences with o.g.f. cosh((2*n + 1)*arctanh(2*sqrt(x))) for n = 1, 2, 3 and 4: n = 0 gives the central binomial coefficients A000984.

Crossrefs

Programs

  • Maple
    seq(1/105*(4096*n^4 + 512*n^3 + 3392*n^2 + 400*n + 105)*binomial(2*n,n), n = 0..20);
  • PARI
    x='x + O('x^30); print(Vec((1 + 144*x + 2016*x^2 + 5376*x^3 + 2304*x^4)/(1 - 4*x)^(9/2))) \\ Indranil Ghosh, Apr 10 2017

Formula

a(n) = 1/105*(4096*n^4 + 512*n^3 + 3392*n^2 + 400*n + 105)*binomial(2*n,n).
O.g.f. cosh(9*arctanh(2*sqrt(x))) = (1 + 144*x + 2016*x^2 + 5376*x^3 + 2304x^4)/(1 - 4*x)^(9/2) = 1 + 162*x + 4806*x^2 + 71892*x^3 + ....
Note that the zeros of the polynomial 1 + 144*x^2 + 2016*x^4 + 5376*x^6 + 2304*x^8 = 1/2*((1 + 2*x)^9 + (1 - 2*x)^9), are given by 1/2*cot(k*Pi/9)*i for 1 <= k <= 8. See A085840.
O.g.f. for the sequence with interpolated zeros: 1/2*( ((1 + 2*x)/(1 - 2*x))^(9/2) + ((1 - 2*x)/(1 + 2*x))^(9/2) ) = 1 + 162*x^2 + 4806*x^4 + 71892*x^6 + ....

A285045 Expansion of cosh(7*arctanh(2*sqrt(x))).

Original entry on oeis.org

1, 98, 1862, 19796, 160454, 1114428, 7008540, 41132520, 229435206, 1230873644, 6403088692, 32488200472, 161473267228, 788758622680, 3796375603320, 18040943163600, 84786596572230, 394599588033420, 1820669979129540, 8335975464699960
Offset: 0

Views

Author

Peter Bala, Apr 10 2017

Keywords

Comments

Note that the function cosh(2*n*arctanh(sqrt(x))) is the o.g.f. for the coordination sequence of the C_n lattice. See, for example, A010006.
In A285043 through A285046 we consider sequences with o.g.f. cosh((2*n+1)*arctanh(2*sqrt(x))) for n = 1, 2, 3 and 4: n = 0 gives the central binomial coefficients A000984.

Crossrefs

Programs

  • Maple
    seq(1/15*(512*n^3 + 64*n^2 + 144*n + 15)*binomial(2*n,n), n = 0..20);
  • Mathematica
    CoefficientList[Series[Cosh[7*ArcTanh[2Sqrt[x]]],{x,0,20}],x] (* Harvey P. Dale, Jun 07 2024 *)

Formula

a(n) = 1/15*(512*n^3 + 64*n^2 + 144*n + 15)*binomial(2*n,n).
O.g.f. cosh(7*arctanh(2*sqrt(x))) = (1 + 84*x + 560*x^2 + 448*x^3)/(1 - 4*x)^(7/2) = 1 + 98*x + 1862*x^2 + 19796*x^3 + ....
Note that the zeros of the polynomial 1 + 84*x^2 + 560*x^4 + 448*x^6 = 1/2*((1 + 2*x)^7 + (1 - 2*x)^7), are given by 1/2*cot(k*Pi/7)*i for 1 <= k <= 6. See A085840.
O.g.f. for the sequence with interpolated zeros: 1/2*( ((1 + 2*x)/(1 - 2*x))^(7/2) + ((1 - 2*x)/(1 + 2*x))^(7/2) ) = 1 + 98*x^2 + 1862*x^4 + 19796*x^6 + ....
D-finite with recurrence: n*(2*n-1)*a(n) +2*(-8*n^2+16*n-57)*a(n-1) +16*(2*n-3)*(n-2)*a(n-2)=0. - R. J. Mathar, Jan 22 2020

A019560 Coordination sequence for C_4 lattice.

Original entry on oeis.org

1, 32, 192, 608, 1408, 2720, 4672, 7392, 11008, 15648, 21440, 28512, 36992, 47008, 58688, 72160, 87552, 104992, 124608, 146528, 170880, 197792, 227392, 259808, 295168, 333600, 375232, 420192, 468608
Offset: 0

Views

Author

mbaake(AT)sunelc3.tphys.physik.uni-tuebingen.de (Michael Baake)

Keywords

Crossrefs

Cf. A103884 (row 4). For coordination sequences of other C_n lattices see A022144 (C_2), A010006 (C3), A019560 - A019564 (C_4 through C_8), A035746 - A035787 (C_9 through C_50).

Programs

  • Magma
    [1] cat [(32/3)*n*(1 + 2*n^2): n in [1..40]]; // Vincenzo Librandi, Apr 10 2017
  • Mathematica
    Join[{1}, Table[(32/3) n (1 + 2 n^2), {n, 30}]] (* Vincenzo Librandi, Apr 10 2017 *)

Formula

a(n) = (32/3)*n*(1 + 2*n^2) for n>0.
G.f.: (1 + 28*x + 70*x^2 + 28*x^3 + x^4)/(1 - x)^4.
G.f. for sequence with interpolated zeros: cosh(8*arctanh(x)) = 1/2*(((1 + x)/(1 - x))^4 + ((1 - x)/(1 + x))^4) = 1 + 32*x^2 + 192*x^4 + 608*x^6 + .... Cf. A057813. - Peter Bala, Apr 09 2017
a(n) = A008412(2*n). - Seiichi Manyama, Jun 08 2018

A110907 Number of points in the standard root system version of the D_3 (or f.c.c.) lattice having L_infinity norm n.

Original entry on oeis.org

1, 12, 50, 108, 194, 300, 434, 588, 770, 972, 1202, 1452, 1730, 2028, 2354, 2700, 3074, 3468, 3890, 4332, 4802, 5292, 5810, 6348, 6914, 7500, 8114, 8748, 9410, 10092, 10802, 11532, 12290, 13068, 13874, 14700, 15554, 16428, 17330, 18252, 19202
Offset: 0

Views

Author

N. J. A. Sloane, Apr 15 2008

Keywords

Comments

This lattice consists of all points (x,y,z) where x,y,z are integers with an even sum.
The L_infinity norm of a vector is the largest component in absolute value.
The sequence for the D_k lattice has the terms ((2*n+1)^k-(2*n-1)^k)/2, if k is even, and the terms ((2n+1)^k-(2*n-1)^k)/2+(-1)^n if k is odd (like here for k=3). The sequence for A_2 is A008458, for A_3 A010006, for A_4 the first differences of A083669. A_5 is 2+2*n^2*(25+44*n^2) if n>0, and 1 if n=0. - R. J. Mathar, Feb 09 2010

Examples

			a(0) = 1: 000
a(1) = 12: +-1 +-1 0, where the 0 can be in any of the three coordinates
a(2) = 50: +-2 0 0 (6), +-2 +-1 +-1 (24), +-2 +-2 0 (12), +-2 +-2 +-2 (8).
		

References

  • J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Springer-Verlag, Chap. 4.

Crossrefs

Cf. A117216, A022144, A010014, A175112 (D_5), A175114 (D_6).

Programs

  • Maple
    A110907 := proc(n) a :=0 ; for x from -n to n do for y from -n to n do for z from -n to n do if type(x+y+z,'even') then m := max( abs(x),abs(y),abs(z)) ; if m = n then a := a+1 ; end if; end if; end do ; end do ; end do ; a ; end proc: seq(A110907(n),n=0..40) ; # R. J. Mathar, Feb 03 2010
  • Mathematica
    a[0] = 1; a[n_] := 1 + (-1)^n + 12*n^2;
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Nov 16 2017, after R. J. Mathar *)

Formula

From R. J. Mathar, Feb 03 2010: (Start)
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4), n>4.
a(n) = 1 + (-1)^n + 12*n^2, n>0.
G.f.: 1 - 2*x*(6 + 13*x + 4*x^2 + x^3)/((1+x)*(x-1)^3). (End)

Extensions

I would like to get analogous sequences for A_2, A_4, A_5, ..., D_4 (see A117216), D_5, ..., E_6, E_7, E_8.
Extended by R. J. Mathar, Feb 03 2010
Removed the "conjectured" attribute from formulas - R. J. Mathar, Feb 27 2010

A285044 Expansion of cosh(5*arctanh(2*sqrt(x))).

Original entry on oeis.org

1, 50, 550, 4020, 24710, 138012, 725340, 3655080, 17859270, 85230860, 399257716, 1842353240, 8396404380, 37868584600, 169278679800, 750923914320, 3308947546950, 14495583969900, 63172016823300, 274031830241400, 1183780040663220
Offset: 0

Views

Author

Peter Bala, Apr 10 2017

Keywords

Comments

Note that the function cosh(2*n*arctanh(sqrt(x))) is the o.g.f. for the coordination sequence of the C_n lattice. See, for example, A010006.
In A285043 through A285046 we consider sequences with o.g.f. cosh((2*n+1)*arctanh(2*sqrt(x))) for n = 1, 2, 3 and 4: n = 0 gives the central binomial coefficients A000984.

Crossrefs

Programs

  • Maple
    seq(1/3*(64*n^2 + 8*n + 3)*binomial(2*n,n), n = 0..20);

Formula

a(n) = 1/3*(64*n^2 + 8*n + 3)*binomial(2*n,n).
O.g.f. cosh(5*arctanh(2*sqrt(x))) = (1 + 40*x + 80*x^2)/(1 - 4*x)^(5/2) = 1 + 50*x + 550*x^2 + 4020*x^3 + ....
Note that the zeros of the polynomial 1 + 40*x^2 + 80*x^4 = 1/2*((1 + 2*x)^5 + (1 - 2*x)^5), are given by 1/2*cot(k*Pi/5)*i for 1 <= k <= 4. See A085840.
O.g.f. for the sequence with interpolated zeros: 1/2*( ((1 + 2*x)/(1 - 2*x))^(5/2) + ((1 - 2*x)/(1 + 2*x))^(5/2) ) = 1 + 50*x^2 + 550*x^4 + 4020*x^6 + ....

A019561 Coordination sequence for C_5 lattice.

Original entry on oeis.org

1, 50, 450, 1970, 5890, 14002, 28610, 52530, 89090, 142130, 216002, 315570, 446210, 613810, 824770, 1086002, 1404930, 1789490, 2248130, 2789810, 3424002, 4160690, 5010370, 5984050, 7093250, 8350002
Offset: 0

Views

Author

mbaake(AT)sunelc3.tphys.physik.uni-tuebingen.de (Michael Baake)

Keywords

Crossrefs

Cf. A103884 (row 5). For coordination sequences of other C_n lattices see A022144 (C_2), A010006 (C3), A019560 - A019564 (C_4 through C_8), A035746 - A035787 (C_9 through C_50).

Programs

  • Mathematica
    LinearRecurrence[{5,-10,10,-5,1},{1,50,450,1970,5890,14002},30] (* Harvey P. Dale, Nov 21 2021 *)

Formula

G.f.: (1+45*x+210*x^2+210*x^3+45*x^4+x^5)/(1-x)^5 = 1+2*x*(5+10*x+x^2)^2/(1-x)^5.
G.f. for sequence with interpolated zeros: cosh(10*arctanh(x)) = 1/2*( ((1 + x)/(1 - x))^5 + ((1 - x)/(1 + x))^5 ) = 1 + 50*x^2 + 450*x^4 + 1970*x^6 + .... - Peter Bala, Apr 09 2017
a(n) = A008413(2*n). - Seiichi Manyama, Jun 08 2018

A035878 Number of points of l_1 norm n in the "diamond" lattice D^+_4.

Original entry on oeis.org

1, 0, 40, 32, 272, 160, 888, 448, 2080, 960, 4040, 1760, 6960, 2912, 11032, 4480, 16448, 6528, 23400, 9120, 32080, 12320, 42680, 16192, 55392, 20800, 70408, 26208, 87920, 32480, 108120, 39680, 131200, 47872, 157352, 57120, 186768, 67488, 219640, 79040, 256160
Offset: 0

Views

Author

Joan Serra-Sagrista (jserra(AT)ccd.uab.es)

Keywords

Examples

			This 4D lattice consists of points with coordinates that have even sum and are either all integer or all half-integer. (It is actually similar to Z^4.) The a(2) = 40 lattice vectors having l_1 norm 2 include: +-(1,1,1,1)/2, 6 permutations of (1,1,-1,-1)/2, 6 permutations with 4 choices of signs in (+-1,+-1,0,0), and 4 permutations with 2 choices of signs in (+-2,0,0,0), totaling 2 + 6 + 6*4 + 4*2 = 40.
		

Crossrefs

Programs

  • Maple
    n := 4; A035878 := proc(m) global n; local k,t1; t1 := 2^(n-1)*binomial((n+2*m)/2-1,n-1); if m mod 2 = 0 then t1 := t1+add(2^k*binomial(n,k)*binomial(m-1,k-1),k=0..n); fi; t1; end;
  • Mathematica
    f[m_, n_] := 2^(n-1) *Binomial[(n + 2*m)/2 - 1, n - 1] + If[EvenQ[m], 2 *n* Hypergeometric2F1[1-m, 1-n, 2, 2], 0]; f[0, ] = 1; Table[f[m, 4], {m, 0, 32}] (* _Jean-François Alcover, Apr 18 2013, after Maple *)
    CoefficientList[Series[(x^8 + 36 x^6 + 32 x^5 + 118 x^4 + 32 x^3 + 36 x^2 + 1)/((x - 1)^4 (x + 1)^4), {x, 0, 50}], x] (* Vincenzo Librandi, Oct 21 2013 *)

Formula

For n>0, a(n) = ( 2n^2 + 1 + (n^2+2)*(-1)^n ) * 4n/3.
G.f.: (x^8+36*x^6+32*x^5+118*x^4+32*x^3+36*x^2+1) / ((x-1)^4*(x+1)^4). - Colin Barker, Nov 18 2012

Extensions

Recomputed by N. J. A. Sloane, Nov 27 1998
More terms from Vincenzo Librandi, Oct 21 2013
Name edited by Andrey Zabolotskiy, Aug 29 2022
Showing 1-10 of 13 results. Next