cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A010021 a(0) = 1, a(n) = 32*n^2 + 2 for n > 0.

Original entry on oeis.org

1, 34, 130, 290, 514, 802, 1154, 1570, 2050, 2594, 3202, 3874, 4610, 5410, 6274, 7202, 8194, 9250, 10370, 11554, 12802, 14114, 15490, 16930, 18434, 20002, 21634, 23330, 25090, 26914, 28802, 30754, 32770, 34850, 36994, 39202, 41474, 43810, 46210, 48674, 51202
Offset: 0

Views

Author

Keywords

Comments

From Omar E. Pol, Apr 21 2021: (Start)
Sequence found by reading the line segment from 1 to 34 together with the line from 34, in the direction 34, 130, ..., in the rectangular spiral whose vertices are the generalized 18-gonal numbers A274979.
The spiral begins as follows:
46_ _ _ _ _ _ _ _ _ _18
| |
| 0 |
| | _ _ _ _ |
| 1 15
|
51
(End)

Crossrefs

Cf. A274979 (generalized 18-gonal numbers).

Programs

  • Mathematica
    Join[{1}, 32 Range[40]^2 + 2] (* Bruno Berselli, Feb 07 2012 *)
    CoefficientList[Series[(1 + x) (1 + 30 x + x^2)/(1 - x)^3, {x, 0, 40}], x] (* Vincenzo Librandi, Jun 25 2014 *)

Formula

G.f.: (1+x)*(1+30*x+x^2)/(1-x)^3. [Bruno Berselli, Feb 07 2012]
a(n) = A005893(4n) = A008527(2n); a(n+1) = A108100(2n+2). [Bruno Berselli, Feb 07 2012]
E.g.f.: (x*(x+1)*32+2)*e^x-1. - Gopinath A. R., Feb 14 2012
a(n) = (4n+1)^2+(4n-1)^2 for n>0. [Bruno Berselli, Jun 24 2014]
a(n) = A244082(n) + 2, n >= 1. - Omar E. Pol, Apr 21 2021
Sum_{n>=0} 1/a(n) = 3/4 + Pi/16*coth(Pi/4) = 1.04940725316131.. - R. J. Mathar, May 07 2024
a(n) = 2*A108211(n). - R. J. Mathar, May 07 2024
a(n) = A195315(n)+A195315(n+1). - R. J. Mathar, May 07 2024

A158563 a(n) = 32*n^2 - 1.

Original entry on oeis.org

31, 127, 287, 511, 799, 1151, 1567, 2047, 2591, 3199, 3871, 4607, 5407, 6271, 7199, 8191, 9247, 10367, 11551, 12799, 14111, 15487, 16927, 18431, 19999, 21631, 23327, 25087, 26911, 28799, 30751, 32767, 34847, 36991, 39199, 41471, 43807, 46207, 48671, 51199, 53791
Offset: 1

Views

Author

Vincenzo Librandi, Mar 21 2009

Keywords

Comments

The identity (32*n^2 - 1)^2 - (256*n^2 - 16)*(2*n)^2 = 1 can be written as a(n)^2 - A158562(n)*A005843(n)^2 = 1. [comment rewritten by R. J. Mathar, Oct 16 2009]
From Omar E. Pol, Apr 21 2021: (Start)
Sequence found by reading the line from 31, in the direction 31, 127, ..., in the rectangular spiral whose vertices are the generalized 18-gonal numbers A274979.
The spiral begins as follows:
46_ _ _ _ _ _ _ _ _ _18
| |
| 0 |
| | _ _ _ _ |
| 1 15
|
51
(End)

Crossrefs

Cf. A274979 (generalized 18-gonal numbers).

Programs

Formula

G.f.: x*(-31-34*x+x^2)/(x-1)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = A244082(n) - 1. - Omar E. Pol, Apr 21 2021
From Amiram Eldar, Mar 09 2023: (Start)
Sum_{n>=1} 1/a(n) = (1 - cot(Pi/(4*sqrt(2)))*Pi/(4*sqrt(2)))/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = (cosec(Pi/(4*sqrt(2)))*Pi/(4*sqrt(2)) - 1)/2. (End)
E.g.f.: 1 + exp(x)*(32*x^2 + 32*x - 1). - Elmo R. Oliveira, Jan 25 2025

A158574 a(n) = 256*n^2 + 16.

Original entry on oeis.org

16, 272, 1040, 2320, 4112, 6416, 9232, 12560, 16400, 20752, 25616, 30992, 36880, 43280, 50192, 57616, 65552, 74000, 82960, 92432, 102416, 112912, 123920, 135440, 147472, 160016, 173072, 186640, 200720, 215312, 230416, 246032, 262160, 278800, 295952, 313616, 331792
Offset: 0

Views

Author

Vincenzo Librandi, Mar 21 2009

Keywords

Comments

The identity (32*n^2 + 1)^2 - (256*n^2 + 16)*(2*n)^2 = 1 can be written as A158575(n)^2 - a(n)*A005843(n)^2 = 1.

Crossrefs

Programs

  • Magma
    I:=[16, 272, 1040]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]]; // Vincenzo Librandi, Feb 15 2012
    
  • Mathematica
    LinearRecurrence[{3, -3, 1}, {16, 272, 1040}, 50] (* Vincenzo Librandi, Feb 15 2012 *)
  • PARI
    for(n=0, 50, print1(256*n+16", ")); \\ Vincenzo Librandi, Feb 15 2012

Formula

G.f.: 16*(1 + 14*x + 17*x^2)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
From Amiram Eldar, Mar 09 2023: (Start)
Sum_{n>=0} 1/a(n) = (coth(Pi/4)*Pi/4 + 1)/32.
Sum_{n>=0} (-1)^n/a(n) = (cosech(Pi/4)*Pi/4 + 1)/32. (End)

Extensions

Comment rewritten, a(0) added by R. J. Mathar, Oct 16 2009

A158685 a(n) = 32*(32*n^2 + 1).

Original entry on oeis.org

32, 1056, 4128, 9248, 16416, 25632, 36896, 50208, 65568, 82976, 102432, 123936, 147488, 173088, 200736, 230432, 262176, 295968, 331808, 369696, 409632, 451616, 495648, 541728, 589856, 640032, 692256, 746528, 802848, 861216, 921632, 984096, 1048608, 1115168, 1183776
Offset: 0

Views

Author

Vincenzo Librandi, Mar 24 2009

Keywords

Comments

The identity (64*n^2 + 1)^2 - (1024*n^2 + 32)*(2*n)^2 = 1 can be written as A158686(n)^2 - a(n)*A005843(n)^2 = 1.

Crossrefs

Programs

Formula

G.f.: -32*(1+30*x+33*x^2)/(x-1)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
From Amiram Eldar, Mar 21 2023: (Start)
Sum_{n>=0} 1/a(n) = (coth(Pi/(4*sqrt(2)))*Pi/(4*sqrt(2)) + 1)/64.
Sum_{n>=0} (-1)^n/a(n) = (cosech(Pi/(4*sqrt(2)))*Pi/(4*sqrt(2)) + 1)/64. (End)
From Elmo R. Oliveira, Jan 15 2025: (Start)
E.g.f.: 32*exp(x)*(1 + 32*x + 32*x^2).
a(n) = 32*A158575(n). (End)

Extensions

Comment rewritten, a(0) added and formula replaced by R. J. Mathar, Oct 22 2009
Showing 1-4 of 4 results.