A081603 Number of 2's in ternary representation of n.
0, 0, 1, 0, 0, 1, 1, 1, 2, 0, 0, 1, 0, 0, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 2, 3, 0, 0, 1, 0, 0, 1, 1, 1, 2, 0, 0, 1, 0, 0, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 2, 3, 1, 1, 2, 1, 1, 2, 2, 2, 3, 1, 1, 2, 1, 1, 2, 2, 2, 3, 2, 2, 3, 2, 2, 3, 3, 3, 4, 0, 0, 1, 0, 0, 1, 1, 1, 2, 0, 0, 1, 0, 0, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2
Offset: 0
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- F. T. Adams-Watters and F. Ruskey, Generating Functions for the Digital Sum and Other Digit Counting Sequences, JIS 12 (2009) 09.5.6.
- Eric Weisstein's World of Mathematics, Ternary.
Programs
-
Haskell
a081603 0 = 0 a081603 n = a081603 n' + m `div` 2 where (n',m) = divMod n 3 -- Reinhard Zumkeller, Feb 21 2013
-
Maple
A081603 := proc(n) local a,d ; a := 0 ; for d in convert(n,base,3) do if d= 2 then a := a+1 ; end if; end do: a; end proc: # R. J. Mathar, Jul 12 2016
-
Mathematica
Table[Count[IntegerDigits[n,3],2],{n,0,6!}] (* Vladimir Joseph Stephan Orlovsky, Jul 25 2009 *) Nest[ Flatten[# /. a_Integer -> {a, a, a + 1}] &, {0}, 5] (* Robert G. Wilson v, May 20 2014 *) DigitCount[Range[0,120],3,2] (* Harvey P. Dale, Jul 10 2019 *)
-
PARI
a(n)=hammingweight(digits(n,3)\2); \\ Ruud H.G. van Tol, Dec 10 2023
-
Python
from gmpy2 import digits def A081603(n): return digits(n,3).count('2') # Chai Wah Wu, Dec 05 2024
Comments