cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A081654 a(n) = 2*4^n - 0^n.

Original entry on oeis.org

1, 8, 32, 128, 512, 2048, 8192, 32768, 131072, 524288, 2097152, 8388608, 33554432, 134217728, 536870912, 2147483648, 8589934592, 34359738368, 137438953472, 549755813888, 2199023255552, 8796093022208, 35184372088832
Offset: 0

Views

Author

Paul Barry, Mar 26 2003

Keywords

Comments

Binomial transform of A081632. Inverse binomial transform of A081655.

Examples

			a(0) = 2*4^0 - 0^0 = 2 - 1 = 1 (use 0^0 = 1).
		

Crossrefs

Cf. A000244 (3^n), A187093.
Essentially the same as A004171.

Programs

Formula

a(0)=1, a(n) = 2*4^n, n>0
G.f.: (1+4*x)/(1-4*x).
E.g.f. 2*exp(4*x)-1.
With interpolated zeros, this is 2^n - 0^n + (-2)^n. - Paul Barry, Sep 06 2003
a(n) = A081294(n+1), n>0. - R. J. Mathar, Sep 17 2008
For n>0, a(n) = 2 * (1 + 3^(n-1) + Sum{x=1..n-2}Sum{k=0..x-1}(binomial(x-1,k)*(3^(k+1) + 3^(n-x+k)))). - J. Conrad, Dec 10 2015

A081631 a(n) = 2*2^n - (-2)^n.

Original entry on oeis.org

1, 6, 4, 24, 16, 96, 64, 384, 256, 1536, 1024, 6144, 4096, 24576, 16384, 98304, 65536, 393216, 262144, 1572864, 1048576, 6291456, 4194304, 25165824, 16777216, 100663296, 67108864, 402653184, 268435456, 1610612736, 1073741824
Offset: 0

Views

Author

Paul Barry, Mar 26 2003

Keywords

Comments

Binomial transform of A081630. Inverse binomial transform of A081632.

Crossrefs

Programs

  • Magma
    [2*2^n-(-2)^n: n in [0..40]]; // Vincenzo Librandi, Aug 10 2013
    
  • Mathematica
    CoefficientList[Series[(1 + 6 x) / ((1 - 2 x) (1 + 2 x)), {x, 0, 40}], x] (* Vincenzo Librandi, Aug 10 2013 *)
    LinearRecurrence[{0,4},{1,6},40] (* or *) With[{nn=20},Riffle[ NestList[ 4#&,1,nn],NestList[4#&,6,nn]]] (* Harvey P. Dale, Aug 04 2019 *)
  • PARI
    a(n)=2*2^n-(-2)^n \\ Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: (1+6*x)/((1-2*x)*(1+2*x)).
E.g.f.: 2*exp(2*x)-exp(-2*x).
Showing 1-2 of 2 results.