cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A282124 Decimal representation of the x-axis, from the origin to the right edge, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 430", based on the 5-celled von Neumann neighborhood.

Original entry on oeis.org

1, 3, 3, 15, 11, 63, 43, 255, 171, 1023, 683, 4095, 2731, 16383, 10923, 65535, 43691, 262143, 174763, 1048575, 699051, 4194303, 2796203, 16777215, 11184811, 67108863, 44739243, 268435455, 178956971, 1073741823, 715827883, 4294967295, 2863311531, 17179869183
Offset: 0

Views

Author

Robert Price, Feb 06 2017

Keywords

Comments

Initialized with a single black (ON) cell at stage zero.

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

Crossrefs

Programs

  • Mathematica
    CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}];
    code = 430; stages = 128;
    rule = IntegerDigits[code, 2, 10];
    g = 2 * stages + 1; (* Maximum size of grid *)
    a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *)
    ca = a;
    ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
    PrependTo[ca, a];
    (* Trim full grid to reflect growth by one cell at each stage *)
    k = (Length[ca[[1]]] + 1)/2;
    ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
    Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 2], {i ,1, stages - 1}]

Formula

Conjectures from Colin Barker, Feb 07 2017: (Start)
a(n) = (-1 + 2*(-1)^n - (-1)^n*2^(1+n) + 2^(2+n)) / 3.
a(n) = 5*a(n-2) - 4*a(n-4) for n>3.
G.f.: (1 + 3*x - 2*x^2) / ((1 - x)*(1 + x)*(1 - 2*x)*(1 + 2*x)).
(End)
Conjectures from Paul Curtz, Jun 10 2019: (Start)
a(n) = A001045(n+1)*(period 2: repeat[1, 3]).
a(n+4) = a(n) + 10*A081631(n).
a(2*n+1) = 2^(2*n+2) -1.
a(n+2) = a(n) + A098646(n+1).
(End)

A081632 2*3^n-(-1)^n.

Original entry on oeis.org

1, 7, 17, 55, 161, 487, 1457, 4375, 13121, 39367, 118097, 354295, 1062881, 3188647, 9565937, 28697815, 86093441, 258280327, 774840977, 2324522935, 6973568801, 20920706407, 62762119217, 188286357655, 564859072961, 1694577218887
Offset: 0

Views

Author

Paul Barry, Mar 26 2003

Keywords

Comments

Binomial transform of A081631. Inverse binomial transform of A081654.

Programs

  • Magma
    [2*3^n-(-1)^n: n in [0..40]]; // Vincenzo Librandi, Aug 10 2013
  • Mathematica
    Total/@Partition[Riffle[2*3^Range[0,30],{-1,1}],2] (* or *) LinearRecurrence[{2,3},{1,7},30] (* Harvey P. Dale, May 24 2011 *)
    CoefficientList[Series[(1 + 5 x) / ((1 - 3 x) (1 + x)), {x, 0, 40}], x] (* Vincenzo Librandi, Aug 10 2013 *)

Formula

G.f.: (1+5*x)/((1-3*x)(1+x)).
E.g.f. 2*exp(3*x)-exp(-x).
a(0)=1, a(1)=7, a(n)=2*a(n-1)+3*a(n-2) [ Harvey P. Dale, May 24 2011]

A081630 2-(-3)^n.

Original entry on oeis.org

1, 5, -7, 29, -79, 245, -727, 2189, -6559, 19685, -59047, 177149, -531439, 1594325, -4782967, 14348909, -43046719, 129140165, -387420487, 1162261469, -3486784399, 10460353205, -31381059607, 94143178829, -282429536479, 847288609445, -2541865828327, 7625597484989
Offset: 0

Views

Author

Paul Barry, Mar 26 2003

Keywords

Comments

Binomial transform of A081629. Inverse binomial transform of A081631.

Programs

  • Magma
    [2-(-3)^n: n in [0..30]]; // Vincenzo Librandi Aug 09 2013
  • Mathematica
    LinearRecurrence[{-2, 3}, {1, 5}, 30] (* Harvey P. Dale, Mar 25 2013 *)
    CoefficientList[Series[(1 + 7 x) / ((1 - x) (1 + 3 x)), {x, 0, 40}], x] (* Vincenzo Librandi, Aug 09 2013 *)

Formula

G.f.: (1+7*x)/((1-x)*(1+3*x)).
E.g.f. 2*exp(x)-exp(-3*x)

A176961 a(n) = (3*2^(n+1) - 8 - (-2)^n)/6.

Original entry on oeis.org

1, 2, 8, 12, 36, 52, 148, 212, 596, 852, 2388, 3412, 9556, 13652, 38228, 54612, 152916, 218452, 611668, 873812, 2446676, 3495252, 9786708, 13981012, 39146836, 55924052, 156587348, 223696212, 626349396, 894784852
Offset: 1

Views

Author

Roger L. Bagula, Apr 29 2010

Keywords

Programs

  • Magma
    [(3*2^(n+1)-8-(-2)^n)/6:n in [1..40]]; // Vincenzo Librandi, Sep 15 2011
  • Mathematica
    a[1] := 1;
    a[n_] := a[n] = a[n - 1]/2 + Sqrt[(5 + 4*(-1)^(n - 1))]/2:
    Table[2^(n - 1)*a[n], {n, 1, 30}]
  • PARI
    a(n)=(3<<(n+1)-(-2)^n)\/6-1 \\ Charles R Greathouse IV, Sep 14 2011
    

Formula

a(n) - a(n-1) = A081631(n-2).
a(n) = a(n-1) + 4*a(n-2) - 4*a(n-3).
G.f.: x*(1 + x + 2*x^2) / ((x-1)*(2*x+1)*(2*x-1)). - R. J. Mathar, Apr 30 2010
a(n) = 2^n - A084247(n-1). - Bruno Berselli, Sep 15 2011
Showing 1-4 of 4 results.