cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081674 Generalized Poly-Bernoulli numbers.

Original entry on oeis.org

0, 1, 6, 29, 130, 561, 2366, 9829, 40410, 164921, 669526, 2707629, 10919090, 43942081, 176565486, 708653429, 2841788170, 11388676041, 45619274246, 182670807229, 731264359650, 2926800830801, 11712433499806, 46865424529029, 187508769705530, 750176293590361, 3001128818666166
Offset: 0

Views

Author

Paul Barry, Mar 28 2003

Keywords

Comments

Binomial transform of A027649. Inverse binomial transform of A081675.
With offset 1, partial sums of A085350. - Paul Barry, Jun 24 2003
Number of walks of length 2n+2 between two nodes at distance 4 in the cycle graph C_12. - Herbert Kociemba, Jul 05 2004

Crossrefs

Programs

  • Magma
    [((4^(n+1)-1)/3-3^n)/2: n in [0..30]]; // Vincenzo Librandi, Jul 17 2011
  • Mathematica
    Join[{a=0,b=1},Table[c=7*b-12*a-1;a=b;b=c,{n,60}]] (* Vladimir Joseph Stephan Orlovsky, Jan 19 2011 *)
    CoefficientList[Series[(x(1-2x))/((1-x)(1-3x)(1-4x)),{x,0,30}],x] (* or *) LinearRecurrence[{8,-19,12},{0,1,6},30] (* Harvey P. Dale, Nov 28 2018 *)

Formula

a(n) = ((4^(n+1) - 1)/3 - 3^n)/2 = (4*4^n - 3*3^n - 1)/6.
a(n) = (A002450(n+1) + A000244(n))/2.
G.f.: x*(1-2*x)/((1-x)*(1-3*x)*(1-4*x)).
From Elmo R. Oliveira, Aug 29 2024: (Start)
E.g.f.: exp(x)*(4*exp(3*x) - 3*exp(2*x) - 1)/6.
a(n) = 8*a(n-1) - 19*a(n-2) + 12*a(n-3) for n > 2. (End)