A081696 Expansion of 1/(x + sqrt(1-4x)).
1, 1, 3, 9, 29, 97, 333, 1165, 4135, 14845, 53791, 196417, 721887, 2667941, 9907851, 36950465, 138320021, 519515209, 1957091277, 7392602917, 27992976565, 106236268337, 404005515873, 1539293204549, 5875059106769, 22459721336977
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..100
- Ron M. Adin, Arkady Berenstein, Jacob Greenstein, Jian-Rong Li, Avichai Marmor, and Yuval Roichman, Transitive and Gallai colorings, arXiv:2309.11203 [math.CO], 2023. See p. 25.
- Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5.
- Paul Barry, Riordan arrays, generalized Narayana triangles, and series reversion, Linear Algebra and its Applications, 491 (2016) 343-385.
- Paul Barry, Chebyshev moments and Riordan involutions, arXiv:1912.11845 [math.CO], 2019.
- Paul Barry and Arnauld Mesinga Mwafise, Classical and Semi-Classical Orthogonal Polynomials Defined by Riordan Arrays, and Their Moment Sequences, Journal of Integer Sequences, Vol. 21 (2018), Article 18.1.5.
- Edward A. Bender, Gregory F. Lawler, Robin Pemantle and Herbert S. Wilf, Irreducible compositions and the first return to the origin of a random walk, arXiv:math/0404253 [math.CO], 2004.
- Edward A. Bender, Gregory F. Lawler, Robin Pemantle and Herbert S. Wilf, Irreducible compositions and the first return to the origin of a random walk, Sem. Lothar. 50 (2004) B50h.
- David Callan, An identity for the central binomial coefficient, arXiv preprint arXiv:1206.3174 [math.CO], 2012. - From _N. J. A. Sloane_, Nov 25 2012
- G. Chatel and V. Pilaud, Cambrian Hopf Algebras, arXiv:1411.3704 [math.CO], 2014-2015.
- Ivan Dimitrov, Cole Gigliotti, Etan Ossip, Charles Paquette, and David Wehlau, Inversion Sets and Quotient Root Systems, arXiv:2310.16767 [math.CO], 2023.
- A. Umar, Some combinatorial problems in the theory of symmetric ..., Algebra Disc. Math. 9 (2010) 115-126.
Programs
-
Mathematica
y[n_] := y[n] = (2*(4*n - 3)*y[n - 1] - (15*n - 24)*y[n - 2] - (4*n - 6)*y[n - 3])/n; y[0] = 1; y[1] = 1; y[2] = 3; (* corrected by Wouter Meeussen, Apr 30 2011 *) CoefficientList[Series[1/(x+Sqrt[1-4x] ),{x,0,30}],x] (* Harvey P. Dale, May 05 2021 *)
-
Maxima
makelist(sum(binomial(2*n-k,n+k)*(3*k+1)/(n+k+1),k,0,n),n,0,12); /* Emanuele Munarini, Apr 02 2011 */
-
PARI
x='x+O('x^66); Vec(1/(x+sqrt(1-4*x))) \\ Joerg Arndt, Jul 06 2013
Formula
G.f.: 1/(x + sqrt(1-4*x)).
D-finite with recurrence: n*a(n) + 2*(-4*n+3)*a(n-1) + 3*(5*n-8)*a(n-2) + 2*(2*n-3)*a(n-3) = 0.
a(n) = Sum_{k=0..n} binomial(2n-k,n+k)*(3k+1)/(n+k+1). - Emanuele Munarini, Apr 02 2011
From Paul Barry, Dec 18 2004: (Start)
A Catalan transform of the Fibonacci numbers F(n+1) under the mapping G(x) -> G(xc(x)), c(x) the g.f. of A000108. The inverse mapping is H(x) -> H(x(1-x)).
a(n) = Sum{k=0..n} (k/(2n-k))binomial(2n-k, n-k)F(k+1). (End)
From Bill Gosper, May 14 2011: (Start)
We have (per Wouter Meeussen): a(n) = (Sum_{k=1..n} k*Fibonacci(k+1)*(-1)^(n+k)*binomial(-n,n-k))/n = (Sum_{k=1..n} k*Fibonacci(k+1)*binomial(2*n-k-1,n-1))/n.
If we introduce an alternating sign, defining b(n) = (Sum_{k=1..n} k*Fibonacci(k+1)*binomial(-n,n-k))/n = (Sum_{k=1..n} k*Fibonacci(k+1)*(-1)^(n+k)*binomial(2*n-k-1,n-1))/n, then b(n) = 1 for all n. (Not obvious--I proved it satisfies b(n+2) = ((17*n^2 + 37*n + 18)*b(n+1) - 4*(2*n+1)*(2*n+3)*b(n))/((n+2)*(n+3)).) (End)
G.f.: 1/(1-x-2x^2/(1-2x-x^2/(1-2x-x^2/(1-2x-x^2/(1-... (continued fraction). - Paul Barry, Aug 03 2009
From Gary W. Adamson, Jul 11 2011: (Start)
a(n) = the upper left term in M^n, M = an infinite square production matrix in which a column of (1,2,2,2,...) is prepended to an infinite lower triangular matrix of all 1's and the rest zeros:
1, 1, 0, 0, 0, 0, ...
2, 1, 1, 0, 0, 0, ...
2, 1, 1, 1, 0, 0, ...
2, 1, 1, 1, 1, 0, ...
2, 1, 1, 1, 1, 1, ...
... (End)
Extensions
More terms from Paul Barry, Dec 18 2004
Wouter credited with first sums in Gosper's FORMULA Comment, which were mistyped by NJAS (caught by Julian Ziegler Hunts), May 14 2011
Comments