A081706 Numbers n such that binary representation ends either in an odd number of ones followed by one zero or in an even number of ones.
2, 3, 10, 11, 14, 15, 18, 19, 26, 27, 34, 35, 42, 43, 46, 47, 50, 51, 58, 59, 62, 63, 66, 67, 74, 75, 78, 79, 82, 83, 90, 91, 98, 99, 106, 107, 110, 111, 114, 115, 122, 123, 130, 131, 138, 139, 142, 143, 146, 147, 154, 155, 162, 163, 170, 171, 174, 175, 178, 179, 186
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from G. C. Greubel)
- Jean-Paul Allouche, Thue, Combinatorics on words, and conjectures inspired by the Thue-Morse sequence, Journal de théorie des nombres de Bordeaux, Vol. 27, No. 2 (2015), pp. 375-388; arXiv preprint, arXiv:1401.3727 [math.NT], 2014.
- Jean-Paul Allouche, André Arnold, Jean Berstel, Srećko Brlek, William Jockusch, Simon Plouffe and Bruce E. Sagan, A sequence related to that of Thue-Morse, Discrete Math., Vol. 139, No. 1-3 (1995), pp. 455-461.
- Rob Burns, Asymptotic density of Motzkin numbers modulo small primes, arXiv:1611.04910 [math.NT], 2016.
- Eric Rowland and Reem Yassawi, Automatic congruences for diagonals of rational functions, Journal de Théorie des Nombres de Bordeaux, Vol. 27, No. 1 (2015), pp. 245-288.
- Index entries for 2-automatic sequences.
Programs
-
Mathematica
(* m = MotzkinNumber *) m[0] = 1; m[n_] := m[n] = m[n - 1] + Sum[m[k]*m[n - 2 - k], {k, 0, n - 2}]; Select[Range[200], Mod[m[#], 2] == 0 &] (* Jean-François Alcover, Jul 10 2013 *) Select[Range[200], EvenQ@Hypergeometric2F1[3/2, -#, 3, 4]&] (* Vladimir Reshetnikov, Nov 02 2015 *)
-
PARI
is(n)=valuation(bitor(n,1)+1,2)%2==0 \\ Charles R Greathouse IV, Mar 07 2013
-
Python
from itertools import count, islice def A081706_gen(): # generator of terms for n in count(0): if (n&-n).bit_length()&1: m = n<<2 yield m-2 yield m-1 A081706_list = list(islice(A081706_gen(),30)) # Chai Wah Wu, Jan 09 2023
-
Python
def A081706(n): def f(x): c, s = (n+1>>1)+x, bin(x)[2:] l = len(s) for i in range(l&1^1,l,2): c -= int(s[i])+int('0'+s[:i],2) return c m, k = n+1>>1, f(n+1>>1) while m != k: m, k = k, f(k) return (m<<2)-1-(n&1) # Chai Wah Wu, Jan 29 2025
Comments