cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 23 results. Next

A079523 Utterly odd numbers: numbers whose binary representation ends in an odd number of ones.

Original entry on oeis.org

1, 5, 7, 9, 13, 17, 21, 23, 25, 29, 31, 33, 37, 39, 41, 45, 49, 53, 55, 57, 61, 65, 69, 71, 73, 77, 81, 85, 87, 89, 93, 95, 97, 101, 103, 105, 109, 113, 117, 119, 121, 125, 127, 129, 133, 135, 137, 141, 145, 149, 151, 153, 157, 159, 161, 165, 167, 169, 173, 177, 181
Offset: 1

Views

Author

Benoit Cloitre, Jan 21 2003

Keywords

Comments

Also, n such that A010060(n) = A010060(n+1) where A010060 is the Thue-Morse sequence.
Sequence of n such that a(n) = 3n begins 7, 23, 27, 29, 31, 39, 71, 87, 91, 93, 95, ...
Values of k such that the Motzkin number A001006(2k) is even. Values of k such that the number of restricted hexagonal polyominoes with 2k+1 cells is even (see A002212). Values of k such that the number of directed animals of size k+1 is even (see A005773). Values of k such that the Riordan number A005043(k) is even. - Emeric Deutsch and Bruce E. Sagan, Apr 02 2003
a(n) = A036554(n)-1 = A072939(n)-2. - Ralf Stephan, Jun 09 2003
Odious and evil terms alternate. - Vladimir Shevelev, Jun 22 2009
The sequence has the following fractal property: remove terms of the form 4k+1 from the sequence, and the remaining terms are of the form 4k+3: 7, 23, 31, 39, 55, 71, 87, ...; then subtract 3 from each of these terms and divide by 4 and you get the original sequence: 1, 5, 7, 9, 13, ... - Benoit Cloitre, Apr 06 2010
A035263(a(n)) = 0. - Reinhard Zumkeller, Mar 01 2012

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndices)
    a079523 n = a079523_list !! (n-1)
    a079523_list = elemIndices 0 a035263_list
    -- Reinhard Zumkeller, Mar 01 2012
    
  • Magma
    [n: n in [0..200] | Valuation(n+1, 2) mod 2 eq 0 + 1]; // Vincenzo Librandi, Apr 16 2015
    
  • Mathematica
    Select[ Range[200], MatchQ[ IntegerDigits[#, 2], {b : (1) ..} | {_, 0, b : (1) ..} /; OddQ[ Length[{b}]]] & ] (* Jean-François Alcover, Jun 17 2013 *)
  • PARI
    is(n)=valuation(n+1,2)%2 \\ Charles R Greathouse IV, Mar 07 2013
    
  • Python
    from itertools import count, islice
    def A079523_gen(startvalue=1): return filter(lambda n:(~(n+1)&n).bit_length()&1,count(max(startvalue,1))) # generator of terms >= startvalue
    A079523_list = list(islice(A079523_gen(),30)) # Chai Wah Wu, Jul 05 2022
    
  • Python
    def A079523(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c, s = n+x, bin(x)[2:]
            l = len(s)
            for i in range(l&1,l,2):
                c -= int(s[i])+int('0'+s[:i],2)
            return c
        return bisection(f,n,n)-1 # Chai Wah Wu, Jan 29 2025

Formula

a(n) is asymptotic to 3n.
a(n) = 2*A003159(n) - 1. a(1)=1, a(n) = a(n-1) + 2 if (a(n-1)+1)/2 does not belong to the sequence and a(n) = a(n-1) + 4 otherwise. - Emeric Deutsch and Bruce E. Sagan, Apr 02 2003
a(n) = (1/2)*A081706(2n-1).
a(n) = A003158(n) - n = A003157(n) - n - 1. - Philippe Deléham, Feb 22 2004
Values of k such that A091297(k) = 0. - Philippe Deléham, Feb 25 2004

A007413 A squarefree (or Thue-Morse) ternary sequence: closed under 1->123, 2->13, 3->2. Start with 1.

Original entry on oeis.org

1, 2, 3, 1, 3, 2, 1, 2, 3, 2, 1, 3, 1, 2, 3, 1, 3, 2, 1, 3, 1, 2, 3, 2, 1, 2, 3, 1, 3, 2, 1, 2, 3, 2, 1, 3, 1, 2, 3, 2, 1, 2, 3, 1, 3, 2, 1, 3, 1, 2, 3, 1, 3, 2, 1, 2, 3, 2, 1, 3, 1, 2, 3, 1, 3, 2, 1, 3, 1, 2, 3, 2, 1, 2, 3, 1, 3, 2, 1, 3, 1, 2, 3, 1, 3, 2, 1, 2, 3, 2, 1, 3, 1, 2, 3, 2, 1, 2, 3, 1, 3, 2, 1, 2, 3
Offset: 1

Views

Author

Keywords

Comments

a(n)=2 if and only if n-1 is in A079523. - Benoit Cloitre, Mar 10 2003
Partial sums modulo 4 of the sequence 1, a(1), a(1), a(2), a(2), a(3), a(3), a(4), a(4), a(5), a(5), a(6), a(6), ... - Philippe Deléham, Mar 04 2004
To construct the sequence: start with 1 and concatenate 4 -1 = 3: 1, 3, then change the last term (2 -> 1, 3 ->2 ) gives 1, 2. Concatenate 1, 2 with 4 -1 = 3, 4 - 2 = 2: 1, 2, 3, 2 and change the last term: 1, 2, 3, 1. Concatenate 1, 2, 3, 1 with 4 - 1 = 3, 4 - 2 = 2, 4 - 3 = 1, 4 - 1 = 3: 1, 2, 3, 1, 3, 2, 1, 3 and change the last term: 1, 2, 3, 1, 3, 2, 1, 2 etc. - Philippe Deléham, Mar 04 2004
To construct the sequence: start with the Thue-Morse sequence A010060 = 0, 1, 1, 0, 1, 0, 0, 1, ... Then change 0 -> 1, 2, 3, and 1 -> 3, 2, 1, gives: 1, 2, 3, , 3, 2, 1, ,3, 2, 1, , 1, 2, 3, , 3, 2, 1, , ... and fill in the successive holes with the successive terms of the sequence itself. - _Philippe Deléham, Mar 04 2004
To construct the sequence: to insert the number 2 between the A003156(k)-th term and the (1 + A003156(k))-th term of the sequence 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, ... - Philippe Deléham, Mar 04 2004
Conjecture. The sequence is formed by the numbers of 1's between every pair of consecutive 2's in A076826. - Vladimir Shevelev, May 31 2009

Examples

			Here are the first 5 stages in the construction of this sequence, together with Mma code, taken from Keranen's article. His alphabet is a,b,c rather than 1,2,3.
productions = {"a" -> "abc ", "b" -> "ac ", "c" -> "b ", " " -> ""};
NestList[g, "a", 5] // TableForm
a
abc
abc ac b
abc ac b abc b ac
abc ac b abc b ac abc ac b ac abc b
abc ac b abc b ac abc ac b ac abc b abc ac b abc b ac abc b abc ac b ac
		

References

  • Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.
  • J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 18.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • A. Thue, Über unendliche Zeichenreihen, Norske Vid. Selsk. Skr. I. Mat. Nat. Kl. Christiania, No. 7 (1906), 1-22.

Crossrefs

First differences of A000069.
Equals A036580(n-1) + 1.

Programs

  • Mathematica
    Nest[ Flatten[ # /. {1 -> {1, 2, 3}, 2 -> {1, 3}, 3 -> {2}}] &, {1}, 7] (* Robert G. Wilson v, May 07 2005 *)
    2 - Differences[ThueMorse[Range[0, 100]]] (* Paolo Xausa, Oct 25 2024 *)
  • PARI
    {a(n) = if( n<1 || valuation(n, 2)%2, 2, 2 + (-1)^subst( Pol(binary(n)), x,1))};
    
  • Python
    def A007413(n): return 2-(n.bit_count()&1)+((n-1).bit_count()&1) # Chai Wah Wu, Mar 03 2023

Formula

a(n) modulo 2 = A035263(n). a(A036554(n)) = 2. a(A003159(n)) = 1 if n odd. a(A003159(n)) = 3 if n even. a(n) = A033485(n) mod 4. a(n) = 4 - A036585(n-1). - Philippe Deléham, Mar 04 2004
a(n) = 2 - A029883(n) = 3 - A036577(n). - Philippe Deléham, Mar 20 2004
For n>=1, we have: 1) a(A108269(n))=A010684(n-1); 2) a(A079523(n))=A010684(n-1); 3) a(A081706(2n))=A010684(n). - Vladimir Shevelev, Jun 22 2009

A039963 The period-doubling sequence A035263 repeated.

Original entry on oeis.org

1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Keywords

Comments

An example of a d-perfect sequence.
Motzkin numbers mod 2. - Benoit Cloitre, Mar 23 2004
Let {a, b, c, c, a, b, a, b, a, b, c, c, a, b, ...} be the fixed point of the morphism: a -> ab, b -> cc, c -> ab, starting from a; then the sequence is obtained by taking a = 1, b = 1, c = 0. - Philippe Deléham, Mar 28 2004
The asymptotic mean of this sequence is 2/3 (Rowland and Yassawi, 2015; Burns, 2016). - Amiram Eldar, Jan 30 2021
The Gilbreath transform of floor(log_2(n)) (A000523). - Thomas Scheuerle, Sep 02 2024

Crossrefs

Motzkin numbers A001006 read mod 2,3,4,5,6,7,8,11: A039963, A039964, A299919, A258712, A299920, A258711, A299918, A258710.

Programs

  • Mathematica
    Flatten[ Nest[ Function[l, {Flatten[(l /. {a -> {a, b}, b -> {c, c}, c -> {a, b}})]}], {a}, 7] /. {a -> {1}, b -> {1}, c -> {0}}] (* Robert G. Wilson v, Feb 26 2005 *)
  • PARI
    A039963(n) = 1 - valuation(n\2+1,2)%2; \\ Max Alekseyev, Oct 23 2021
    
  • Python
    def A039963(n): return ((m:=(n>>1)+1)&-m).bit_length()&1 # Chai Wah Wu, Jan 09 2023

Formula

a(n) = A035263(1+floor(n/2)). - Benoit Cloitre, Mar 23 2004
a(n) = A040039(n) mod 2 = A002212(n+1) mod 2. a(0) = a(1) = 1, for n>=2: a(n) = ( a(n) + Sum_{k=0..n-2} a(k)*a(n-2-k)) mod 2. - Philippe Deléham, Mar 26 2004
a(n) = (A(n+2) - A(n)) mod 2, for A = A019300, A001285, A010060, A010059, A000069, A001969. - Philippe Deléham, Mar 28 2004
a(n) = A001006(n) mod 2. - Christian G. Bower, Jun 12 2005
a(n) = (-1)^n*(A096268(n+1) - A096268(n)). - Johannes W. Meijer, Feb 02 2013
a(n) = 1 - A007814(floor(n/2)+1) mod 2 = A005802(n) mod 2. - Max Alekseyev, Oct 23 2021

Extensions

More terms from Christian G. Bower, Jun 12 2005
Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe and Ralf Stephan, Jul 13 2007

A161579 Positions n such that A010060(n) = A010060(n+3).

Original entry on oeis.org

0, 1, 3, 4, 6, 8, 9, 11, 12, 13, 15, 16, 17, 19, 20, 22, 24, 25, 27, 28, 30, 32, 33, 35, 36, 38, 40, 41, 43, 44, 45, 47, 48, 49, 51, 52, 54, 56, 57, 59, 60, 61, 63, 64, 65, 67, 68, 70, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 86, 88, 89, 91, 92, 94, 96, 97, 99, 100, 102, 104, 105, 107
Offset: 1

Views

Author

Vladimir Shevelev, Jun 14 2009

Keywords

Comments

Or: union of A131323 with the sequence of terms of the form A131323(n)-2, and with the sequence of terms of the form A036554(n)-2.
Conjecture: In every sequence of numbers n such that A010060(n)=A010060(n+k), for fixed odd k, the odious (A000069) and evil (A001969) terms alternate. - Vladimir Shevelev, Jul 31 2009

Crossrefs

Programs

  • Mathematica
    tm[0] = 0; tm[n_?EvenQ] := tm[n] = tm[n/2]; tm[n_] := tm[n] = 1 - tm[(n-1)/2]; Reap[For[n = 0, n <= 200, n++, If[tm[n] == tm[n+3], Sow[n]]]][[2, 1]] (* Jean-François Alcover, Oct 24 2013 *)
  • PARI
    is(n)=hammingweight(n)%2==hammingweight(n+3)%2 \\ Charles R Greathouse IV, Aug 20 2013

Formula

Equals {A001477} \ {A161580}.

Extensions

More terms from R. J. Mathar, Aug 17 2009

A161580 Positions n such that A010060(n) + A010060(n+3) = 1.

Original entry on oeis.org

2, 5, 7, 10, 14, 18, 21, 23, 26, 29, 31, 34, 37, 39, 42, 46, 50, 53, 55, 58, 62, 66, 69, 71, 74, 78, 82, 85, 87, 90, 93, 95, 98, 101, 103, 106, 110, 114, 117, 119, 122, 125, 127, 130, 133, 135, 138, 142, 146, 149, 151, 154, 157, 159, 162, 165, 167, 170, 174, 178, 181, 183, 186
Offset: 1

Views

Author

Vladimir Shevelev, Jun 14 2009

Keywords

Comments

Conjecture: In every sequence of numbers n such that A010060(n) + A010060(n+k) = 1, for fixed odd k, the odious (A000069) and evil (A001969) terms alternate. [From Vladimir Shevelev, Jul 31 2009]

Crossrefs

Programs

  • Mathematica
    tm[0] = 0; tm[n_?EvenQ] := tm[n] = tm[n/2]; tm[n_] := tm[n] = 1 - tm[(n-1)/2]; Reap[For[n = 0, n <= 200, n++, If[tm[n] + tm[n+3] == 1, Sow[n]]]][[2, 1]] (* Jean-François Alcover, Oct 24 2013 *)
  • PARI
    is(n)=hammingweight(n)%2+hammingweight(n+3)%2==1 \\ Charles R Greathouse IV, Mar 22 2013

Formula

Extensions

More terms from R. J. Mathar, Aug 17 2009

A161627 Positions n such that A010060(n)=A010060(n+4).

Original entry on oeis.org

4, 5, 6, 7, 20, 21, 22, 23, 28, 29, 30, 31, 36, 37, 38, 39, 52, 53, 54, 55, 68, 69, 70, 71, 84, 85, 86, 87, 92, 93, 94, 95, 100, 101, 102, 103, 116, 117, 118, 119, 124, 125, 126, 127, 132, 133, 134, 135, 148, 149, 150, 151, 156, 157, 158, 159, 164, 165, 166, 167, 180, 181, 182
Offset: 1

Views

Author

Vladimir Shevelev, Jun 15 2009

Keywords

Comments

Or: union of the numbers of the form 4*A079523(n)+k, k=0, 1, 2, or 3.
Locates patterns of the form 1xxx1 or 0xxx0 in the Thue-Morse sequence.

Crossrefs

Programs

  • Mathematica
    tm[0] = 0; tm[n_?EvenQ] := tm[n] = tm[n/2]; tm[n_] := tm[n] = 1 - tm[(n-1)/2]; Reap[For[n = 0, n <= 200, n++, If[tm[n] == tm[n+4], Sow[n]]]][[2, 1]] (* Jean-François Alcover, Oct 24 2013 *)
    SequencePosition[ThueMorse[Range[200]],{x_,,,_,x_}][[All,1]] (* Requires Mathematica version 11 or later *) (* Harvey P. Dale, Apr 16 2017 *)
  • PARI
    is(n)=hammingweight(n)%2==hammingweight(n+4)%2 \\ Charles R Greathouse IV, Aug 20 2013

Extensions

Extended by R. J. Mathar, Aug 28 2009

A161639 Positions n such that A010060(n) = A010060(n+8).

Original entry on oeis.org

8, 9, 10, 11, 12, 13, 14, 15, 40, 41, 42, 43, 44, 45, 46, 47, 56, 57, 58, 59, 60, 61, 62, 63, 72, 73, 74, 75, 76, 77, 78, 79, 104, 105, 106, 107, 108, 109, 110, 111, 136, 137, 138, 139, 140, 141, 142, 143, 168, 169, 170, 171, 172, 173, 174, 175, 184, 185, 186, 187, 188, 189
Offset: 1

Views

Author

Vladimir Shevelev, Jun 15 2009

Keywords

Comments

Locates correlations of the form 1xxxxxxx1 or 0xxxxxxx0 in the Thue-Morse sequence.
Or: union of numbers 8*A079523(n)+k, k=0, 1, 2, 3, 4, 5, 6, or 7.
Generalization: the numbers n such that A010060(n) = A010060(n+2^m) constitute the union of sequences {2^m*A079523(n)+k}, k=0,1,...,2^m-1.

Crossrefs

Programs

  • Mathematica
    tm[0] = 0; tm[n_?EvenQ] := tm[n] = tm[n/2]; tm[n_] := tm[n] = 1 - tm[(n-1)/2]; Reap[For[n = 0, n <= 200, n++, If[tm[n] == tm[n+8], Sow[n]]]][[2, 1]] (* Jean-François Alcover, Oct 24 2013 *)
    SequencePosition[ThueMorse[Range[0,200]],{x_,,,_,,,_,,x}][[All,1]]-1 (* Harvey P. Dale, Jul 23 2021 *)
  • PARI
    is(n)=hammingweight(n)%2==hammingweight(n+8)%2 \\ Charles R Greathouse IV, Aug 20 2013

Extensions

Duplicate of 174 removed by R. J. Mathar, Aug 28 2009

A161641 Positions n such that A010060(n) + A010060(n+4) = 1.

Original entry on oeis.org

0, 1, 2, 3, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 24, 25, 26, 27, 32, 33, 34, 35, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 88, 89, 90, 91, 96, 97, 98, 99, 104, 105, 106, 107, 108
Offset: 1

Views

Author

Vladimir Shevelev, Jun 15 2009

Keywords

Comments

Also union of all numbers of the form A131323(n)-k, k=0, 1, 2, or 3.

Crossrefs

Programs

  • Mathematica
    tm[0] = 0; tm[n_?EvenQ] := tm[n] = tm[n/2]; tm[n_] := tm[n] = 1 - tm[(n - 1)/2]; Reap[For[n = 0, n <= 16000, n++, If[tm[n] + tm[n + 4] == 1, Sow[n]]]][[2, 1]] (* G. C. Greubel, Jan 01 2018 *)
  • PARI
    is(n)=hammingweight(n)%2!=hammingweight(n+4)%2 \\ Charles R Greathouse IV, Aug 20 2013

Formula

Extensions

More terms from R. J. Mathar, Aug 17 2009

A161674 Positions n such that A010060(n) + A010060(n+2) = 1.

Original entry on oeis.org

0, 1, 4, 5, 6, 7, 8, 9, 12, 13, 16, 17, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 32, 33, 36, 37, 38, 39, 40, 41, 44, 45, 48, 49, 52, 53, 54, 55, 56, 57, 60, 61, 64, 65, 68, 69, 70, 71, 72, 73, 76, 77, 80, 81, 84, 85, 86, 87, 88, 89, 92, 93, 94, 95, 96, 97, 100, 101, 102, 103, 104
Offset: 1

Views

Author

Vladimir Shevelev, Jun 16 2009

Keywords

Comments

Locates patterns of the form 0x1 or 1x0 in the Thue-Morse sequence.
Complement to A081706. Also: union of sequences {2*A121539(n)+k}, k=0 or 1, generalized in A161673.
Also union of sequences {A079523(n)-k}, k=0 or 1. For a generalization see A161890. - Vladimir Shevelev, Jul 05 2009
The asymptotic density of this sequence is 2/3 (Rowland and Yassawi, 2015; Burns, 2016). - Amiram Eldar, Jan 30 2021

Crossrefs

Programs

Extensions

Extended by R. J. Mathar, Aug 28 2009

A161673 Positions n such that A010060(n) + A010060(n+8) = 1.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 48, 49, 50, 51, 52, 53, 54, 55, 64, 65, 66, 67, 68, 69, 70, 71, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103
Offset: 1

Views

Author

Vladimir Shevelev, Jun 16 2009

Keywords

Comments

Also union of numbers of the form 8*A121539(n)+k, 0<=k<8.
Generalization: the numbers n such that A010060(n)+A010060(n+2^m)=1 constitute the union of sequences {2^m*A121539(n)+k}, k=0,1,...,2^m-1.

Crossrefs

Programs

  • Mathematica
    tm[0] = 0; tm[n_?EvenQ] := tm[n] = tm[n/2]; tm[n_] := tm[n] = 1 - tm[(n - 1)/2]; Reap[For[n = 0, n <= 6000, n++, If[tm[n] + tm[n + 8] == 1, Sow[n]]]][[2, 1]] (* G. C. Greubel, Jan 05 2018 *)
  • PARI
    is(n)=hammingweight(n)%2!=hammingweight(n+8)%2 \\ Charles R Greathouse IV, Aug 20 2013

Formula

Extensions

Edited and extended by R. J. Mathar, Sep 02 2009
Showing 1-10 of 23 results. Next