cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A161817 Positions n such that A010060(n) = A010060(n+5).

Original entry on oeis.org

0, 2, 5, 8, 10, 11, 12, 14, 15, 16, 18, 21, 24, 26, 29, 32, 34, 37, 40, 42, 43, 44, 46, 47, 48, 50, 53, 56, 58, 59, 60, 62, 63, 64, 66, 69, 72, 74, 75, 76, 78, 79, 80, 82, 85, 88, 90, 93, 96, 98, 101, 104, 106, 107, 108, 110, 111, 112, 114, 117, 120, 122, 125, 128, 130, 133, 136, 138, 139, 140, 142, 143, 144
Offset: 1

Views

Author

Vladimir Shevelev, Jun 20 2009

Keywords

Comments

Let A=Axxxxxx be any sequence. Denote by A^* the intersection of A and the union of sequences {4*A(n)+k}, k=-1,0,1,2. Then the present sequence is the union of A079523^* and A121539^*.
Conjecture. In every sequence of numbers n such that A010060(n)=A010060(n+k) for fixed odd k, the odious (A000069) and evil (A001969) terms alternate. [Vladimir Shevelev, Jul 31 2009]

Crossrefs

Programs

  • Mathematica
    tm[0] = 0; tm[n_?EvenQ] := tm[n] = tm[n/2]; tm[n_] := tm[n] = 1 - tm[(n - 1)/2]; Reap[For[n = 0, n <= 20000, n++,  If[tm[n] == tm[n + 5], Sow[n]]]][[2, 1]] (* G. C. Greubel, Jan 05 2018 *)
  • PARI
    is(n)=hammingweight(n+5)==Mod(hammingweight(n),2) \\ Charles R Greathouse IV, Mar 26 2013

A161824 Numbers such that A010060(n) = A010060(n+6).

Original entry on oeis.org

0, 1, 2, 3, 6, 7, 8, 9, 12, 13, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 30, 31, 32, 33, 34, 35, 38, 39, 40, 41, 44, 45, 48, 49, 50, 51, 54, 55, 56, 57, 60, 61, 64, 65, 66, 67, 70, 71, 72, 73, 76, 77, 80, 81, 82, 83, 86, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 102, 103, 104, 105, 108
Offset: 1

Views

Author

Vladimir Shevelev, Jun 20 2009

Keywords

Comments

Let A=Axxxxxx be any sequence from OEIS. Denote by A^* the intersection of the union of sequences {2*A(n)+j}, j=0,1, and the union of sequences {4*A(n)+k}, k=-2,-1,0,1. Then the sequence is the union of (A079523)^* and (A121539)^*.

Crossrefs

Programs

  • Mathematica
    tm[0] = 0; tm[n_?EvenQ] := tm[n] = tm[n/2]; tm[n_] := tm[n] = 1 - tm[(n - 1)/2]; Reap[For[n = 0, n <= 6000, n++, If[tm[n] == tm[n + 6], Sow[n]]]][[2, 1]] (* G. C. Greubel, Jan 05 2018 *)
  • PARI
    is(n)=hammingweight(n)%2==hammingweight(n+6)%2 \\ Charles R Greathouse IV, Aug 20 2013

Extensions

Terms a(40) onwards added by G. C. Greubel, Jan 05 2018
Offset corrected by Mohammed Yaseen, Mar 29 2023

A161890 Numbers such that A010060(n) = A010060(n+9).

Original entry on oeis.org

0, 2, 3, 4, 6, 7, 9, 13, 15, 16, 18, 19, 20, 22, 24, 26, 27, 28, 30, 32, 34, 35, 36, 38, 39, 41, 45, 47, 48, 50, 51, 52, 54, 55, 57, 61, 63, 64, 66, 67, 68, 70, 71, 73, 77, 79, 80, 82, 83, 84, 86, 88, 90, 91, 92, 94, 96, 98, 99, 100, 102, 103, 105, 109, 111, 112, 114, 115, 116, 118, 120
Offset: 0

Views

Author

Vladimir Shevelev, Jun 21 2009

Keywords

Comments

Or union of intersection of A161639 and {A079523(n)-8} and intersection of A161673 and {A121539(n)-8}. In general, for a>=1, consider equations A010060(x+a)+A010060(x)=1, A010060(x+a)=A010060(x). Denote via B_a (C_a) the sequence of nonnegative solutions of the first (second) equation. Then we have recursions: B_(a+1) is the union of transactions 1) C_a and {A121539(n)-a}, 2) B_a and {A079523(n)-a}; C_(a+1) is the union of transactions 1) C_a and {A079523(n)-a}, 2) B_a and {A121539(n)-a}.
Conjecture. In every sequence of numbers n, such that A010060(n)=A010060(n+k), for fixed odd k, the odious (A000069) and evil (A001969) terms alternate. - Vladimir Shevelev, Jul 31 2009
This conjecture was actually proved in a later version of the Shevelev arxiv article cited below, and it can also easily be proved by the Walnut prover. - Jeffrey Shallit, Oct 12 2022

Crossrefs

Programs

  • Mathematica
    tm[0] = 0; tm[n_?EvenQ] := tm[n] = tm[n/2]; tm[n_] := tm[n] = 1 - tm[(n - 1)/2]; Reap[For[n = 0, n <= 18000, n++, If[tm[n] == tm[n + 9], Sow[n]]]][[2, 1]] (* G. C. Greubel, Jan 05 2018 *)
    SequencePosition[ThueMorse[Range[0,150]],{x_,,,_,,,_,,,x_}][[All,1]]-1 (* Harvey P. Dale, Feb 06 2023 *)
  • PARI
    is(n)=hammingweight(n)%2==hammingweight(n+9)%2 \\ Charles R Greathouse IV, Aug 20 2013

Extensions

Terms a(35) onward added by G. C. Greubel, Jan 05 2018

A134717 Odd Motzkin numbers.

Original entry on oeis.org

1, 1, 9, 21, 51, 127, 323, 835, 15511, 41835, 853467, 2356779, 50852019, 142547559, 400763223, 1129760415, 3192727797, 9043402501, 208023278209, 593742784829, 1697385471211, 4859761676391, 13933569346707, 40002464776083, 953467954114363, 2750016719520991, 7939655757745265
Offset: 1

Views

Author

Omar E. Pol, Nov 11 2007

Keywords

Comments

A001006 except A134718. - Vladimir Reshetnikov, Nov 02 2015
The asymptotic density of this sequence within the Motzkin numbers is 2/3. - Amiram Eldar, Aug 26 2024

Crossrefs

Programs

  • Maple
    S:= series(exp(x)*BesselI(1, 2*x)/x, x, 500):
    select(type, [seq(simplify(coeff(S,x,j)*j!), j=0..498)], odd); # Robert Israel, Nov 03 2015
  • Mathematica
    Select[Table[(-1)^n Hypergeometric2F1[3/2, -n, 3, 4], {n, 0, 40}], OddQ] (* Vladimir Reshetnikov, Nov 02 2015 *)
  • PARI
    a001006(n) = polcoeff((1-x-sqrt((1-x)^2-4*x^2+x^3*O(x^n)))/ (2*x^2), n); for(n=0, 100, if((m=a001006(n))%2==1, print1(m", "))) \\ Altug Alkan, Nov 03 2015

Formula

a(n) = A001006(A161674(n)). - Amiram Eldar, Aug 26 2024

A360949 G.f. A(x) satisfies: 1 = Sum_{n>=0} (-x/2)^n * (A(x)^n + (-1)^n)^n.

Original entry on oeis.org

1, 2, 8, 50, 376, 3124, 27804, 260496, 2539616, 25556330, 263922884, 2785341186, 29948035032, 327315887046, 3630399545244, 40813503158790, 464662514679168, 5354222585965310, 62419468527625408, 736098528973804246, 8781173950238637928, 105987886325647341056
Offset: 0

Views

Author

Paul D. Hanna, Mar 03 2023

Keywords

Comments

Conjecture: a(0) = 1, a(2*A161674(k) + 1) == 2 (mod 4) for k >= 1, otherwise a(n) == 0 (mod 4). A161674 lists positions n such that A010060(n) + A010060(n+2) = 1, where A010060 is the Thue-Morse sequence.

Examples

			G.f.: A(x) = 1 + 2*x + 8*x^2 + 50*x^3 + 376*x^4 + 3124*x^5 + 27804*x^6 + 260496*x^7 + 2539616*x^8 + 25556330*x^9 + ...
such that
1 = 1 - (x/2)*(A(x) - 1) + (x/2)^2*(A(x)^2 + 1)^2 - (x/2)^3*(A(x)^3 - 1)^3 + (x/2)^4*(A(x)^4 + 1)^4 - (x/2)^5*(A(x)^5 - 1)^5 + (x/2)^6*(A(x)^6 + 1)^6 - (x/2)^7*(A(x)^7 - 1)^7 + ...
also,
1 = 2/(2 - x) - 2*x*A(x)/(2 + x*A(x))^2 + 2*x^2*A(x)^4/(2 - x*A(x)^2)^3 - 2*x^3*A(x)^9/(2 + x*A(x)^3)^4 + 2*x^4*A(x)^16/(2 - x*A(x)^4)^5 - 2*x^5*A(x)^25/(2 + x*A(x)^5)^6 + 2*x^6*A(x)^36/(2 - x*A(x)^6)^7 ... + 2*(-x)^n*A(x)^(n^2)/(2 - (-1)^n*x*A(x)^n)^(n+1) + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]);
    for(i=1, n, A=concat(A, 0); A[#A] = 2*polcoeff( sum(m=0, #A, (-x/2)^m * (Ser(A)^m + (-1)^m)^m ), #A)); A[n+1]}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies:
(1) 1 = Sum_{n>=0} (-x/2)^n * (A(x)^n + (-1)^n)^n.
(2) 1 = Sum_{n>=0} 2 * (-x)^n * A(x)^(n^2) / (2 - (-1)^n * x * A(x)^n)^(n+1).
a(n) = A325574(n)/2^n for n >= 0.

A161974 a(n) = number of equalities of the form A010060(n+k) = A010060(n), k=1,2,3.

Original entry on oeis.org

1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1
Offset: 0

Views

Author

Vladimir Shevelev, Jun 23 2009

Keywords

Comments

See comment to A161916. 3-a(n) is the number of equalities of kind A010060(n+k) = 1-A010060(n), k=1,2,3.

Crossrefs

Programs

Extensions

Missing a(24)=1 inserted by Georg Fischer, Jun 21 2024

A162311 Numbers such that A010060(n) = A010060(n+7).

Original entry on oeis.org

1, 3, 4, 5, 7, 10, 14, 17, 19, 20, 21, 23, 25, 27, 28, 29, 31, 33, 35, 36, 37, 39, 42, 46, 49, 51, 52, 53, 55, 58, 62
Offset: 1

Views

Author

Vladimir Shevelev, Jul 01 2009

Keywords

Comments

Or union of intersection of A161673 and {A121539(n)-7} and intersection of A161639 and {A079523(n)-7}.
Conjecture: In every sequence of numbers n, such that A010060(n)=A010060(n+k), for fixed odd k, the odious (A000069) and evil (A001969) terms alternate. - Vladimir Shevelev, Jul 31 2009

Crossrefs

Programs

  • Mathematica
    tm[0] = 0; tm[n_?EvenQ] := tm[n] = tm[n/2]; tm[n_] := tm[n] = 1 - tm[(n - 1)/2]; Reap[For[n = 0, n <= 20000, n++, If[tm[n] == tm[n + 7], Sow[n]]]][[2, 1]] (* G. C. Greubel, Jan 05 2018 *)
  • PARI
    is(n)=hammingweight(n)%2==hammingweight(n+7)%2 \\ Charles R Greathouse IV, Aug 20 2013

A162648 Locations of patterns 1001 or 0110 in the Thue-Morse sequence A010060.

Original entry on oeis.org

0, 4, 6, 8, 12, 16, 20, 22, 24, 28, 30, 32, 36, 38, 40, 44, 48, 52, 54, 56, 60, 64, 68, 70, 72, 76, 80, 84, 86, 88, 92, 94, 96, 100, 102, 104, 108, 112, 116, 118, 120, 124, 126, 128, 132, 134, 136, 140, 144, 148, 150, 152, 156, 158, 160, 164, 166, 168, 172, 176, 180
Offset: 1

Views

Author

Vladimir Shevelev, Jul 08 2009

Keywords

Comments

Numbers n for which A010060(n+1) = A010060(n+2) = 1-A010060(n) and A010060(n+3) = A010060(n).
Or intersection of A121539, A161674, and A161579.

Crossrefs

Programs

  • Mathematica
    Select[Range[3500], MatchQ[IntegerDigits[#, 2], {b : (1) ..} | {_, 0, b : (1) ..} /; OddQ[Length[{b}]]] &] - 1 (* G. C. Greubel, Jan 05 2018 *)
    With[{nn=200},Sort[Join[SequencePosition[ThueMorse[Range[0,nn]],{1,0,0,1}],SequencePosition[ ThueMorse[Range[0,nn]],{0,1,1,0}]]][[;;,1]]]-1 (* Harvey P. Dale, Aug 20 2024 *)
  • PARI
    is(n)=my(v=vector(4,i,hammingweight(n+i-1))); v[1]==v[4] && v[1]!=v[2] && v[1]!=v[3] \\ Charles R Greathouse IV, Aug 20 2013

Formula

a(n) = A079523(n) - 1.

Extensions

More readable definition from R. J. Mathar, Sep 16 2009
Showing 1-8 of 8 results.