cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081715 Numbers n such that 3^n+2 is a semiprime.

Original entry on oeis.org

6, 7, 11, 12, 20, 27, 28, 40, 44, 60, 71, 84, 108, 118, 145, 156, 160, 211, 263, 295, 296, 304, 306, 316, 351, 474, 488, 495
Offset: 1

Views

Author

Hugo Pfoertner, Apr 04 2003

Keywords

Comments

a(29) >= 514. - Hugo Pfoertner, Jul 24 2019
531, 562, 676, 760, 807, 866, 1059, 1502, 1659, 2539, 2656, 3070, 3163, 4014, 5736, 5966, 6680, 6745, 7192, 7861, 8104, 9703, 10014 are terms of this sequence. - Chai Wah Wu, Oct 18 2019

Examples

			a(1)=6 because 3^6+2=731=17*43, a(2)=7 because 3^7+2=2189=11*199.
a(1)=6 because 3^6+2=731=17*43
a(2)=7 because 3^7+2=2189=11*199
a(3)=11 because 3^11+2=177149=7*25307
a(4)=12 because 3^12+2=531443=11*48313
a(5)=20 because 3^20+2=3486784403=58027*60089
a(6)=27 because 3^27+2=7625597484989=11*693236134999
a(7)=28 because 3^28+2=22876792454963=131*174632003473
a(8)=40 because 3^40+2=12157665459056928803=1170408739*10387538177
a(9)=44 because 3^44+2=984770902183611232883=21577*45639843452917979
a(10)=60 because 3^60+2=42391158275216203514294433203=89*476305149159732623756117227
a(11)=71 because 3^71+2=7509466514979724803946715958257549=7*1072780930711389257706673708322507
a(12)=84 because 3^84+2=11972515182562019788602740026717047105683=13483993*887905769645684315365837109728331
a(13)=108 because 3^108+2=3381391913522726342930221472392241170198527451848563=671633*5034582746116891729456744192724659405059798211
a(14)=118 because 3^118+2=199667811101603467823686647723289448859052847504205678491=17*11745165358917851048452155748428791109356049853188569323
a(15)=145 because 3^145+2=1522586358169246802159262479225089070726226750574991661790882326344645=5*304517271633849360431852495845017814145245350114998332358176465268929
a(16)=156 because 3^156+2=269721605590607563262106870407286853611938890184108047911269431464974473523=21883136019044570108827*12325546272521124629737118652366725946328428459583049
a(17)=160 because 3^160+2=21847450052839212624230656502990235142567050104912751880812823948662932355203=19*1149865792254695401275297710683696586450897373942776414779622313087522755537
a(18)=211 because 3^211+2=47052721287394587764057094854672253553918218437190874778408030747195017485692977810906266281547645149=97*485079600900975131588217472728579933545548643682380152354721966465928015316422451658827487438635517
a(19)=263 because 3^263+2=304011485348815530556923313708989269910796626718253224787639751028488890841299195402970869140037716024202112537180443065484429=7*43430212192687932936703330529855609987256660959750460683948535861212698691614170771852981305719673717743158933882920437926347
a(20)=295 because 3^295+2=563339419994190847700930153835754386693266237141306322927902016783411511018514718493004963603658195013376479179415613344911575031957595780109=3535513*159337391771488564092659298335419608609349261943402929908022404891004929417177851840172830252259911083165718575894251653129708484159893
		

Crossrefs

Programs

  • PARI
    for(n=1, 295, if(bigomega(3^n+2)==2, print1(n", "))) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Apr 25 2007

Extensions

2 more terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Apr 25 2007
More terms from Sean A. Irvine, Mar 21 2010