cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081719 Triangle T(n,k) read by rows, related to Faà di Bruno's formula (n >= 0 and 0 <= k <= n).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 5, 5, 1, 0, 1, 9, 14, 7, 1, 0, 1, 13, 32, 27, 9, 1, 0, 1, 20, 66, 80, 44, 11, 1, 0, 1, 28, 123, 203, 160, 65, 13, 1, 0, 1, 40, 222, 465, 486, 280, 90, 15, 1, 0, 1, 54, 377, 985, 1305, 990, 448, 119, 17, 1, 0, 1, 75, 630, 1978, 3203, 3051, 1807, 672, 152, 19, 1
Offset: 0

Views

Author

N. J. A. Sloane, Apr 05 2003

Keywords

Comments

From Petros Hadjicostas, May 30 2020: (Start)
We may prove Philippe Deléham's formula by induction on n. Let P(n,k) = A008284(n,k) and b(n) = A039809(n). For n = 0, Sum_{k=0..0} T(0,k) = 1 = b(1). Let n >= 1, and assume his formula is true for all s < n, i.e., Sum_{k=0..s} T(s,k) = b(s+1).
Then Sum_{k=0..n} T(n, k) = Sum_{k=1..n} T(n,k) = Sum_{k=1..n} Sum_{s=k-1..n-1} P(n+1, s+1)*T(s, k-1) = Sum_{s=0..n-1} P(n+1, s+1) Sum_{k=1..s+1} T(s, k-1) = Sum_{s=0..n-1} P(n+1, s+1) Sum_{m=0..s} T(s,m) = Sum_{s=0..n-1} P(n+1, s+1)*b(s+1) = Sum_{r=1..n} P(n+1, r)*b(r) = b(n+1) (by the definition of b = A039809). (End)

Examples

			Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:
  1;
  0, 1;
  0, 1,  1;
  0, 1,  3,  1;
  0, 1,  5,  5,  1;
  0, 1,  9, 14,  7,  1;
  0, 1, 13, 32, 27,  9,  1;
  0, 1, 20, 66, 80, 44, 11, 1;
  ...
		

Crossrefs

Programs

  • Mathematica
    (* b = A008284 *)
    b[n_, k_]:= b[n, k]= If[n>0 && k>0, b[n-1, k-1] + b[n-k, k], Boole[n==0 && k==0]];
    T[n_, k_]:= T[n, k]= If[n==0 && k==0, 1, If[k==0, 0,  Sum[T[j, k-1]*b[n+1, j+1], {j, k-1, n-1}] ]];
    Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, May 31 2020 *)
  • PARI
    P(n, k)=#partitions(n-k, k); /* A008284 */
    tabl(nn) = {A = matrix(nn, nn, n, k, 0); A[1,1] = 1; for(n=2, nn, for(k=2, n, A[n,k] = sum(s=k-2, n-2, P(n, s+1)*A[s+1,k-1])));
    for (n=1, nn, for (k=1, n, print1(A[n, k], ", "); ); print(); ); }  \\ Petros Hadjicostas, May 29 2020

Formula

There is a recurrence involving the partition function A008284.
Sum_{k=0..n} T(n,k) = A039809(n+1). - Philippe Deléham, Sep 30 2006
From Petros Hadjicostas, May 30 2020: (Start)
T(n, k) = Sum_{s=k-1..n-1} A008284(n+1, s+1)*T(s, k-1) for 1 <= k <= n with T(0,0) = 1 and T(n,0) = 0 for n >= 1.
T(n, k=2) = A007042(n) = A047812(n,2). (End)

Extensions

More terms from Emeric Deutsch, Feb 28 2005