A081719 Triangle T(n,k) read by rows, related to Faà di Bruno's formula (n >= 0 and 0 <= k <= n).
1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 5, 5, 1, 0, 1, 9, 14, 7, 1, 0, 1, 13, 32, 27, 9, 1, 0, 1, 20, 66, 80, 44, 11, 1, 0, 1, 28, 123, 203, 160, 65, 13, 1, 0, 1, 40, 222, 465, 486, 280, 90, 15, 1, 0, 1, 54, 377, 985, 1305, 990, 448, 119, 17, 1, 0, 1, 75, 630, 1978, 3203, 3051, 1807, 672, 152, 19, 1
Offset: 0
Examples
Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins: 1; 0, 1; 0, 1, 1; 0, 1, 3, 1; 0, 1, 5, 5, 1; 0, 1, 9, 14, 7, 1; 0, 1, 13, 32, 27, 9, 1; 0, 1, 20, 66, 80, 44, 11, 1; ...
Links
- Warren P. Johnson, The curious history of Faà di Bruno's formula, American Mathematical Monthly, 109 (2002), 217-234.
- Warren P. Johnson, The curious history of Faà di Bruno's formula, American Mathematical Monthly, 109 (2002), 217-234.
- Winston C. Yang, Derivatives are essentially integer partitions, Discrete Mathematics, 222(1-3), July 2000, 235-245.
Programs
-
Mathematica
(* b = A008284 *) b[n_, k_]:= b[n, k]= If[n>0 && k>0, b[n-1, k-1] + b[n-k, k], Boole[n==0 && k==0]]; T[n_, k_]:= T[n, k]= If[n==0 && k==0, 1, If[k==0, 0, Sum[T[j, k-1]*b[n+1, j+1], {j, k-1, n-1}] ]]; Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, May 31 2020 *)
-
PARI
P(n, k)=#partitions(n-k, k); /* A008284 */ tabl(nn) = {A = matrix(nn, nn, n, k, 0); A[1,1] = 1; for(n=2, nn, for(k=2, n, A[n,k] = sum(s=k-2, n-2, P(n, s+1)*A[s+1,k-1]))); for (n=1, nn, for (k=1, n, print1(A[n, k], ", "); ); print(); ); } \\ Petros Hadjicostas, May 29 2020
Formula
There is a recurrence involving the partition function A008284.
Sum_{k=0..n} T(n,k) = A039809(n+1). - Philippe Deléham, Sep 30 2006
From Petros Hadjicostas, May 30 2020: (Start)
T(n, k) = Sum_{s=k-1..n-1} A008284(n+1, s+1)*T(s, k-1) for 1 <= k <= n with T(0,0) = 1 and T(n,0) = 0 for n >= 1.
Extensions
More terms from Emeric Deutsch, Feb 28 2005
Comments