cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081728 Length of periods of Euler numbers modulo prime(n).

Original entry on oeis.org

1, 2, 2, 6, 10, 6, 8, 18, 22, 14, 30, 18, 20, 42, 46, 26, 58, 30, 66, 70, 36, 78, 82, 44, 48, 50, 102, 106, 54, 56, 126, 130, 68, 138, 74, 150, 78, 162, 166, 86, 178, 90, 190, 96, 98, 198, 210, 222, 226, 114, 116, 238, 120, 250, 128, 262, 134, 270, 138, 140, 282, 146
Offset: 1

Views

Author

Benoit Cloitre, Apr 06 2003

Keywords

Comments

As proved by Kummer, if the actual signed Euler numbers (A122045) are used, then the period is prime(n)-1 for n>1. - T. D. Noe, Mar 16 2007

Examples

			A000364 modulo 5=prime(3) gives : 1,1,0,1,0,1,0,1,0,1,0,... with period (1,0) of length 2, hence a(3)=2.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{p = Prime[n], t, d = Divisors[p - 1], dk, k = 1},t = Mod[Table[Abs@EulerE[2i], {i, 2, p}], p];While[dk = d[[k]];Nand @@ Equal @@@ Partition[Partition[t, dk], 2, 1], k++ ];dk];Array[f, 63] (* Ray Chandler, Mar 15 2007 *)

Formula

a(n)=prime(n)-1 if prime(n) == 2 or 3 (mod 4)

Extensions

More terms from John W. Layman, Jul 29 2005
Extended by Ray Chandler, Mar 15 2007