A081728 Length of periods of Euler numbers modulo prime(n).
1, 2, 2, 6, 10, 6, 8, 18, 22, 14, 30, 18, 20, 42, 46, 26, 58, 30, 66, 70, 36, 78, 82, 44, 48, 50, 102, 106, 54, 56, 126, 130, 68, 138, 74, 150, 78, 162, 166, 86, 178, 90, 190, 96, 98, 198, 210, 222, 226, 114, 116, 238, 120, 250, 128, 262, 134, 270, 138, 140, 282, 146
Offset: 1
Keywords
Examples
A000364 modulo 5=prime(3) gives : 1,1,0,1,0,1,0,1,0,1,0,... with period (1,0) of length 2, hence a(3)=2.
Programs
-
Mathematica
f[n_] := Block[{p = Prime[n], t, d = Divisors[p - 1], dk, k = 1},t = Mod[Table[Abs@EulerE[2i], {i, 2, p}], p];While[dk = d[[k]];Nand @@ Equal @@@ Partition[Partition[t, dk], 2, 1], k++ ];dk];Array[f, 63] (* Ray Chandler, Mar 15 2007 *)
Formula
a(n)=prime(n)-1 if prime(n) == 2 or 3 (mod 4)
Extensions
More terms from John W. Layman, Jul 29 2005
Extended by Ray Chandler, Mar 15 2007
Comments