cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081738 a(n) = Sum_{2 <= p <= n, p prime} p^2.

Original entry on oeis.org

0, 4, 13, 13, 38, 38, 87, 87, 87, 87, 208, 208, 377, 377, 377, 377, 666, 666, 1027, 1027, 1027, 1027, 1556, 1556, 1556, 1556, 1556, 1556, 2397, 2397, 3358, 3358, 3358, 3358, 3358, 3358, 4727, 4727, 4727, 4727, 6408, 6408, 8257, 8257, 8257, 8257, 10466, 10466
Offset: 1

Views

Author

N. J. A. Sloane, Apr 07 2003

Keywords

Crossrefs

Programs

  • Magma
    A081738:= func< n | n eq 1 select 0 else (&+[k^2: k in PrimesInInterval(1, n)]) >;
    [A081738(n): n in [1..60]]; // G. C. Greubel, Jan 31 2025
    
  • Mathematica
    Table[Total[Prime[Range[PrimePi[n]]]^2],{n,48}] (* Stefano Spezia, Aug 22 2022 *)
  • PARI
    a(n, j=2) = if(n <= 1, return(0)); my(r=sqrtint(n)); my(V=vector(r, k, n\k)); my(F(n,j)=(subst(bernpol(j+1),x,n+1) - subst(bernpol(j+1),x,1)) / (j+1)); my(L=n\r-1); V=concat(V, vector(L, k, L-k+1)); my(T=vector(#V, k, F(V[k],j))); my(S=Map(matrix(#V,2,x,y,if(y==1,V[x],T[x])))); forprime(p=2, r, my(sp=mapget(S,p-1), p2=p*p); for(k=1, #V, if(V[k] < p2, break); mapput(S, V[k], mapget(S,V[k]) - p^j*(mapget(S,V[k]\p) - sp)))); mapget(S,n)-1; \\ Daniel Suteu, Aug 21 2022
    
  • PARI
    a(n) = norml2(primes(primepi(n))); \\ Michel Marcus, Aug 22 2022
    
  • Python
    from sympy import prime, primerange
    def A081738(n): return sum(p**2 for p in primerange(2,n+1))
    print([A081738(n) for n in range(1,61)]) # G. C. Greubel, Jan 31 2025