cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A357318 Decimal expansion of 1/(2*L), where L is the conjectured Landau's constant A081760.

Original entry on oeis.org

9, 2, 0, 3, 7, 1, 3, 7, 3, 3, 1, 7, 9, 4, 2, 4, 9, 7, 6, 5, 5, 5, 1, 8, 5, 6, 4, 5, 4, 3, 1, 7, 2, 9, 9, 4, 7, 2, 6, 2, 4, 5, 7, 9, 1, 9, 4, 9, 8, 9, 4, 3, 3, 8, 3, 4, 3, 3, 0, 0, 1, 9, 9, 7, 7, 3, 1, 0, 1, 8, 0, 8, 0, 8, 0, 5, 6, 8, 5, 6, 3, 9, 3, 6, 3, 3, 8, 5
Offset: 0

Views

Author

Stefano Spezia, Sep 23 2022

Keywords

Examples

			0.9203713733179424976555185645431729947262...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[N[Gamma[1/6]/(2Gamma[1/3]Gamma[5/6]),88]]]
  • PARI
    1/(2*gamma(1/3)*gamma(5/6)/gamma(1/6)) \\ Michel Marcus, Sep 24 2022

Formula

Equals 1/(2*A081760) = A175379/(2*A073005*A203145).
Equals Sum_{k,m in Z^2} exp(-Pi*(2/sqrt(3))*(k^2+k*m+m^2))*exp(2*Pi*i*(k/3-m/3)).
Equals Sum_{k>=0} (binomial(-1/3,2*k)^2 - binomial(-1/3,2*k+1)^2). - Gerry Martens, Jul 24 2023
Equals 3*Gamma(1/3)^3 / (2^(8/3) * Pi^2). - Vaclav Kotesovec, Jul 27 2023

A355178 Decimal expansion of 2^(-2/3)/L, where L is the conjectured Landau's constant A081760.

Original entry on oeis.org

1, 1, 5, 9, 5, 9, 5, 2, 6, 6, 9, 6, 3, 9, 2, 8, 3, 6, 5, 7, 6, 9, 9, 9, 2, 0, 5, 1, 5, 7, 0, 0, 2, 0, 8, 8, 1, 9, 4, 5, 1, 6, 5, 2, 6, 3, 4, 3, 9, 7, 8, 2, 8, 5, 5, 2, 6, 3, 1, 0, 5, 0, 5, 9, 7, 4, 7, 9, 7, 3, 7, 5, 7, 2, 0, 5, 2, 8, 6, 2, 5, 8, 6, 5, 8, 0, 8, 5, 2, 5
Offset: 1

Views

Author

Stefano Spezia, Sep 23 2022

Keywords

Examples

			1.159595266963928365769992051570020881945...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[N[2^(1/3)*Gamma[1/6]/(2Gamma[1/3]Gamma[5/6]), 90]]]

Formula

Equals Sum_{k,m in Z^2} exp(-Pi*(2/sqrt(3))*(k^2+k*m+m^2)).
From Gerry Martens, Jul 29 2023: (Start)
Equals hypergeom([1/3, 2/3], [1], 1/2).
Equals sqrt(Pi)/(Gamma(2/3)*Gamma(5/6)). (End)

A224273 Decimal expansion of Baxter's four-coloring constant.

Original entry on oeis.org

1, 4, 6, 0, 9, 9, 8, 4, 8, 6, 2, 0, 6, 3, 1, 8, 3, 5, 8, 1, 5, 8, 8, 7, 3, 1, 1, 7, 8, 4, 6, 0, 5, 9, 6, 9, 7, 0, 3, 8, 9, 3, 1, 3, 5, 5, 8, 0, 7, 4, 6, 1, 7, 8, 8, 2, 0, 5, 7, 7, 5, 4, 3, 4, 4, 4, 1, 5, 2, 1, 3, 5, 5, 8, 8, 5, 7, 3, 1, 4, 4, 0, 7, 7, 6, 5, 3
Offset: 1

Views

Author

Bruno Berselli, Apr 02 2013

Keywords

Comments

The constant is named after Australian physicist Rodney James Baxter. - Amiram Eldar, Aug 13 2020

Examples

			1.46099848620631835815887311784605969703893135580746178820577543...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003. See p. 413.

Crossrefs

Programs

  • Mathematica
    RealDigits[3 Gamma[1/3]^3/(4 Pi^2), 10, 90][[1]]
  • PARI
    3*gamma(1/3)^3/(4*Pi^2) \\ Michel Marcus, Mar 23 2020

Formula

Equals 1/Product_{n>=1} (1-1/(3n-1)^2) = 3*Gamma(1/3)^3/(4*Pi^2).
Equals 1/(2^(1/3)*A081760). - Kritsada Moomuang, Mar 15 2020
Equals 2*Pi/(sqrt(3)*Gamma(2/3)^3). - Vaclav Kotesovec, Mar 23 2020
Equals Product_{k>=1} (1 + 1/A152751(k)). - Amiram Eldar, Aug 13 2020
Equals Sum_{k>=0} binomial(-1/3, k)^2. - Gerry Martens, Jul 24 2023
Showing 1-3 of 3 results.