cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A260641 Numbers n such that 2^n-1 is in A004782 but not in A081767.

Original entry on oeis.org

2, 3, 7, 9, 12, 13, 17, 23, 25, 26, 31, 33, 37, 41, 44, 45, 46, 48, 49, 55, 56, 57, 61, 65, 67
Offset: 1

Views

Author

M. F. Hasler, Nov 11 2015

Keywords

Comments

It appears that the numbers in A004782 \ A081767 are all of the form 2^n-1; this sequence gives the corresponding n-values.

Programs

  • PARI
    for(k=2,999, n=2^k-1; !binomod(2*n-2, n-1, n^2-n) && binomod(2*n, n,n^2-1) && print1(k", "))

A260642 Numbers in A004782, n-1 | C(n-1), but not in A081767, n-1 | C(n), where C(n) = A000108(n) = 2n!/n!(n+1)! are the Catalan numbers.

Original entry on oeis.org

3, 7, 127, 511, 4095, 8191, 131071, 8388607, 33554431, 67108863, 2147483647, 8589934591, 137438953471, 2199023255551, 17592186044415, 35184372088831, 70368744177663, 281474976710655, 562949953421311, 36028797018963967, 72057594037927935
Offset: 1

Views

Author

M. F. Hasler, Nov 11 2015

Keywords

Comments

It appears that all terms are of the form 2^k-1 ; see A260641 for the k-values.

Crossrefs

Formula

a(n) = 2^A260641(n)-1 = A000225(A260641(n)), i.e., equals A000225 o A260641.
Equals A004782 \ A081767.

A004782 Numbers k such that 2*(2k-3)!/(k!*(k-1)!) is an integer.

Original entry on oeis.org

2, 3, 7, 16, 21, 29, 43, 46, 67, 78, 89, 92, 105, 111, 127, 141, 154, 157, 171, 188, 191, 205, 210, 211, 221, 229, 232, 239, 241, 267, 277, 300, 309, 313, 316, 323, 326, 331, 346, 369, 379, 415, 421, 430, 436, 441, 443, 451, 460, 461, 465, 469, 477
Offset: 1

Views

Author

Keywords

Comments

Superset of A081767, as proved by Luke Pebody. Terms not in A081767 include 3, 7, 127, 511, ... - Ralf Stephan, Oct 12 2004
See A260642 for A004782 \ A081767. - M. F. Hasler, Nov 11 2015
Equivalently, numbers k such that binomial(2k-3,k-1) == 0 (mod k*(k-1)/2), or: binomial(2k-2,k-1) == 0 (mod k^2-k), or: the Catalan number A000108(k-1) is divisible by k-1, i.e., a(n) = A014847(n) + 1. Indeed, 2(2k-3)!/(k!*(k-1)!) = 2(2k-2)!/(k!(k-1)!(2k-2)) = C(k-1)/(k-1). - M. F. Hasler, Nov 11 2015

Programs

  • Mathematica
    Select[Range[500], IntegerQ[2 (2 # - 3)!/(#! (# - 1)!)] &] (* Arkadiusz Wesolowski, Sep 06 2011 *)
  • PARI
    for(n=2, 999, binomial(2*n-2, n-1)%(n^2-n)||print1(n", "))
    
  • PARI
    is_A004782(n)=!binomod(2*n-2, n-1, n^2-n) \\ Using http://home.gwu.edu/~maxal/gpscripts/binomod.gp by M. Alekseyev. - M. F. Hasler, Nov 11 2015

Formula

a(n) = A014847(n) + 1. - Enrique Pérez Herrero, Feb 03 2013

Extensions

Offset corrected and initial term added by Arkadiusz Wesolowski, Sep 06 2011

A094575 Numbers k with property that binomial(2k, k) / (k-1) is an integer.

Original entry on oeis.org

2, 3, 5, 7, 16, 21, 25, 29, 41, 43, 46, 67, 73, 78, 89, 92, 105, 111, 127, 141, 154, 157, 171, 188, 191, 205, 210, 211, 221, 229, 232, 239, 241, 267, 277, 300, 305, 309, 313, 316, 323, 326, 331, 346, 369, 379, 415, 421, 430, 436, 441, 443, 451, 460, 461, 465
Offset: 1

Views

Author

Robert G. Wilson v, May 11 2004

Keywords

Crossrefs

Contains A081767 as a subsequence.

Programs

  • Mathematica
    Select[ Range[468], Mod[Binomial[2#, # ], (# - 1)] == 0 &]

A227902 Numbers n such that triangular(n) divides binomial(2n,n).

Original entry on oeis.org

1, 2, 4, 6, 15, 20, 24, 28, 40, 42, 45, 66, 72, 77, 88, 91, 104, 110, 126, 140, 153, 156, 170, 187, 190, 204, 209, 210, 220, 228, 231, 238, 240, 266, 276, 299, 304, 308, 312, 315, 322, 325, 330, 345, 368, 378, 414, 420, 429, 435, 440, 442, 450, 459, 460, 464, 468, 476, 480
Offset: 1

Views

Author

Alex Ratushnyak, Oct 14 2013

Keywords

Comments

A014847 is a subsequence.

Examples

			triangular(6)=21, A000984(6)=924. Because 21 divides 924, 6 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[480], Mod[Binomial[2 #, #], # (# + 1)/2] == 0 &] (* T. D. Noe, Oct 16 2013 *)
  • PARI
    is(n) = { my(f = factor(binomial(n+1, 2))); for(i = 1, #f~, if(val(2*n, f[i, 1]) - 2*val(n, f[i, 1]) < f[i, 2], return(0) ) ); 1 }
    val(n, p) = my(r=0); while(n, r+=n\=p);r \\ David A. Corneth, Apr 03 2021
  • Python
    from sympy import binomial
    for n in range(1, 444):
        CBC = binomial(2 * n, n)
        if not CBC % binomial(n + 1, 2):
           print(n, end=",")
    
Showing 1-5 of 5 results.