cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081863 Largest integer m such that m divides (sigma_(2n+1)(2k-1)-sigma(2k-1)) for all k>=1.

Original entry on oeis.org

24, 240, 168, 480, 264, 21840, 24, 16320, 3192, 2640, 552, 43680, 24, 6960, 57288, 32640, 24, 15353520, 24, 216480, 7224, 5520, 1128, 1485120, 264, 12720, 3192, 13920, 1416, 454293840, 24, 65280, 258888, 240, 18744, 2241613920, 24, 240, 13272, 7360320, 1992
Offset: 1

Views

Author

Benoit Cloitre, Apr 12 2003

Keywords

Comments

a(n)==0 mod 24. It seems that a(n)==0 (mod 2n+1) if and only if 2n+1 is an odd prime.
It appears that a(n)=24 for n in A045979, a(n)=168 for n in A051227, a(n)=264 for n in A051229, and a(n)=240 or 480 if n is in A051225. - Michel Marcus, Dec 07 2013

Crossrefs

Cf. A000203.

Programs

  • PARI
    ds(n, k) = sigma(2*k-1, 2*n+1) - sigma(2*k-1);
    a(n) = {my(m = ds(n, 1)); for (k=2, 100, m = gcd(m, ds(n, k));); m;} \\ Script computes gcd of 100 terms; for current data, 10 terms are actually sufficient; is there a better way? - Michel Marcus, Dec 07 2013

Extensions

a(12) corrected and more terms from Michel Marcus, Dec 07 2013