cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081881 Pack bins of size 1 sequentially with items of size 1/1, 1/2, 1/3, 1/4, ... . Sequence gives values of n for which 1/n starts a new bin.

Original entry on oeis.org

1, 2, 4, 10, 26, 69, 186, 504, 1369, 3720, 10111, 27483, 74705, 203068, 551995, 1500477, 4078718, 11087104, 30137872, 81923228, 222690421, 605335323, 1645472007, 4472856655, 12158484965, 33050188741, 89839727480, 244209698681, 663830786257, 1804479163453, 4905082919846
Offset: 1

Views

Author

Wouter Meeussen, Apr 13 2003

Keywords

Comments

For n >= 3, it appears that a(n) = round((a(n-1) - 1/2)*e). Verified through n = 10000 (using the approximation Sum_{j=1..k} 1/j = log(k) + gamma + 1/(2*k) - 1/(12*k^2) + 1/(120*k^4) - 1/(252*k^6) + 1/(240*k^8) - ... + 7709321041217/(16320*k^32), where gamma is the Euler-Mascheroni constant, A001620). - Jon E. Schoenfield, Mar 30 2018

Examples

			1/1; 1/2+1/3, 1/4+1/5+1/6+1/7+1/8+1/9 are all just less than or equal to 1; so first four terms are 1, 2, 4, 10.
Lower and upper indices of bin contents are {1,1}, {2,3}, {4,9}, {10,25}, {26,68}, {69,185}, {186,503}, {504,1368}, {1369,3719}, {3720,10110}, {10111,27482}, ...
		

Crossrefs

Programs

  • Mathematica
    res ={}; FoldList[If[ #1+#2 > 1, AppendTo[res, #2];#2, #1+#2]&, 0, Table[1/k, {k, 1, 1000}]]; 1/res
    lst = {1, 2}; n = 2; Do[s = 0; While[s = N[s + 1/n, 64]; s < 1, n++ ]; AppendTo[lst, n]; Print@n, {i, 25}]; lst (* Robert G. Wilson v, Aug 19 2008 *)
  • PARI
    default(realprecision, 10^4); e=exp(1);
    A136616(k) = floor(e*k + (e-1)/2 + (e-1/e)/(24*k+12));
    lista(nn) = {my(k=1); print1(k); for(n=2, nn, k=A136616(k-1)+1; print1(", ", k)); } \\ Jinyuan Wang, Feb 20 2020

Formula

a(n) is asymptotic to C*exp(n) where C=0.1688... - Benoit Cloitre, Apr 14 2003
C = 0.16885635666714420373167977550090103410150395689764... (cf. A300897). - Jon E. Schoenfield, Apr 12 2018
a(n) = 1 + (A136616^(n-1))(0), where (f^0)(x)=x, (f^(n+1))(x) = f((f^n)(x)) for any function f. - Rainer Rosenthal, Feb 16 2008, Apr 05 2020

Extensions

a(13)-a(25) from Robert G. Wilson v, Aug 19 2008
More terms from Jinyuan Wang, Feb 20 2020