A081881 Pack bins of size 1 sequentially with items of size 1/1, 1/2, 1/3, 1/4, ... . Sequence gives values of n for which 1/n starts a new bin.
1, 2, 4, 10, 26, 69, 186, 504, 1369, 3720, 10111, 27483, 74705, 203068, 551995, 1500477, 4078718, 11087104, 30137872, 81923228, 222690421, 605335323, 1645472007, 4472856655, 12158484965, 33050188741, 89839727480, 244209698681, 663830786257, 1804479163453, 4905082919846
Offset: 1
Examples
1/1; 1/2+1/3, 1/4+1/5+1/6+1/7+1/8+1/9 are all just less than or equal to 1; so first four terms are 1, 2, 4, 10. Lower and upper indices of bin contents are {1,1}, {2,3}, {4,9}, {10,25}, {26,68}, {69,185}, {186,503}, {504,1368}, {1369,3719}, {3720,10110}, {10111,27482}, ...
Links
- Jinyuan Wang, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
res ={}; FoldList[If[ #1+#2 > 1, AppendTo[res, #2];#2, #1+#2]&, 0, Table[1/k, {k, 1, 1000}]]; 1/res lst = {1, 2}; n = 2; Do[s = 0; While[s = N[s + 1/n, 64]; s < 1, n++ ]; AppendTo[lst, n]; Print@n, {i, 25}]; lst (* Robert G. Wilson v, Aug 19 2008 *)
-
PARI
default(realprecision, 10^4); e=exp(1); A136616(k) = floor(e*k + (e-1)/2 + (e-1/e)/(24*k+12)); lista(nn) = {my(k=1); print1(k); for(n=2, nn, k=A136616(k-1)+1; print1(", ", k)); } \\ Jinyuan Wang, Feb 20 2020
Formula
a(n) is asymptotic to C*exp(n) where C=0.1688... - Benoit Cloitre, Apr 14 2003
C = 0.16885635666714420373167977550090103410150395689764... (cf. A300897). - Jon E. Schoenfield, Apr 12 2018
a(n) = 1 + (A136616^(n-1))(0), where (f^0)(x)=x, (f^(n+1))(x) = f((f^n)(x)) for any function f. - Rainer Rosenthal, Feb 16 2008, Apr 05 2020
Extensions
a(13)-a(25) from Robert G. Wilson v, Aug 19 2008
More terms from Jinyuan Wang, Feb 20 2020
Comments