A081914 a(n) = 3^n*(n^3 - 3n^2 + 2n + 162)/162.
1, 3, 9, 28, 93, 333, 1269, 5022, 20169, 80919, 321489, 1259712, 4861701, 18482337, 69264477, 256154562, 935867601, 3381559083, 12096128601, 42874534116, 150706570221, 525729603573, 1821263718789, 6269238352998, 21454184419353
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..150
- Index entries for linear recurrences with constant coefficients, signature (12,-54,108,-81).
Crossrefs
Cf. A081915.
Programs
-
Magma
[3^n*(n^3-3*n^2+2*n+162)/162: n in [0..40]]; // Vincenzo Librandi, Apr 27 2011
-
Mathematica
CoefficientList[Series[(1 - 9x + 27x^2 - 26x^3)/(1-3x)^4 , {x, 0, 50}], x] (* Stefano Spezia, Sep 02 2018 *) LinearRecurrence[{12,-54,108,-81},{1,3,9,28},30] (* Harvey P. Dale, Aug 01 2019 *)
-
PARI
a(n)=3^n*(n^3-3*n^2+2*n+162)/162 \\ Charles R Greathouse IV, Oct 07 2015
Formula
a(n) = 3^n*(n^3 - 3n^2 + 2n + 162)/162.
G.f.: (1 - 9x + 27x^2 - 26x^3)/(1-3x)^4.
Comments