A081916 a(n) = 5^n*(n^3 - 3n^2 + 2n + 750)/750.
1, 5, 25, 126, 645, 3375, 18125, 100000, 565625, 3265625, 19140625, 113281250, 673828125, 4013671875, 23876953125, 141601562500, 836181640625, 4913330078125, 28717041015625, 166931152343750, 965118408203125
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..150
- Index entries for linear recurrences with constant coefficients, signature (20,-150,500,-625).
Programs
-
Magma
[5^n*(n^3-3*n^2+2*n+750)/750: n in [0..40]]; // Vincenzo Librandi, Apr 27 2011
-
Mathematica
a[n_]:= 5^n*(n^3 - 3n^2 + 2n + 750)/750 ; Array[a, 40, 0] (* or *) CoefficientList[Series[(1 - 15x + 75x^2 - 124x^3)/(1-5x)^4 ,{x, 0, 40}], x] (* Stefano Spezia, Sep 02 2018 *) LinearRecurrence[{20,-150,500,-625},{1,5,25,126},30] (* Harvey P. Dale, Jun 29 2021 *)
Formula
a(n) = 5^n*(n^3 - 3n^2 + 2n + 750)/750.
G.f.: (1 - 15x + 75x^2 - 124x^3)/(1-5x)^4.
Comments