A081982 Primes p such that p+1 is divisible by the digital product (of nonzero digits) of p.
11, 23, 101, 113, 131, 167, 211, 233, 311, 431, 863, 1013, 1021, 1031, 1061, 1103, 1201, 1217, 1223, 1259, 1301, 1601, 1619, 1637, 1721, 1823, 2003, 2011, 2111, 2687, 3011, 3023, 3203, 4111, 4703, 6011, 6047, 6101, 6173, 6263, 6911, 7013
Offset: 1
Examples
167 is a term as 168 is divisible by 1*6*7 = 42.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
filter:= proc(n) isprime(n) and n+1 mod convert(subs(0=NULL,convert(n,base,10)),`*`) = 0 end proc: select(filter, [seq(i,i=3..10000,2)]); # Robert Israel, Nov 09 2017
-
PARI
isok(p) = isprime(p) && (d=digits(p)) && !((p+1) % prod(k=1, #d, if (d[k], d[k], 1))); \\ Michel Marcus, Nov 09 2017
Extensions
More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 06 2003
Comments