A082030 Expansion of e.g.f. exp(x)/(1-x)^3.
1, 4, 19, 106, 685, 5056, 42079, 390454, 4000441, 44881660, 547457611, 7215589954, 102211815589, 1548801969976, 25000879886935, 428332610385166, 7763306399014129, 148412806214119924, 2984692721713278211
Offset: 0
Links
- Roland Bacher, Counting Packings of Generic Subsets in Finite Groups, Electr. J. Combinatorics, 19 (2012), #P7. - From _N. J. A. Sloane_, Feb 06 2013
- Eric Weisstein's World of Mathematics, Poisson-Charlier polynomial
Programs
-
Maple
a := n -> hypergeom([3, -n], [], -1); seq(simplify(a(n)), n=0..18); # Peter Luschny, Sep 20 2014 seq(simplify(KummerU(-n, -n - 2, 1)), n = 0..20); # Peter Luschny, May 10 2022
-
Mathematica
a[n_] := a[n] = If[n == 0, 1, (n (n^2 + n + 1) a[n-1] + 1)/(n^2 - n + 1)]; a /@ Range[0, 18] (* Jean-François Alcover, Oct 16 2019 *) With[{nn=20},CoefficientList[Series[Exp[x]/(1-x)^3,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Aug 07 2022 *)
-
PARI
{a(n)=n!*polcoeff(exp(x+x*O(x^n))/(1-x)^3,n)} /* Paul D. Hanna, Sep 30 2011 */
-
PARI
{a(n)=sum(k=0,n,binomial(n,k)*(k+2)!/2)} /* Paul D. Hanna, Sep 30 2011 */
-
PARI
{a(n)=sum(k=0,n,binomial(n,k)*(k+1)^(k+1)*(-k)^(n-k))} /* Paul D. Hanna, Sep 30 2011 */
-
PARI
{a(n)=polcoeff(sum(m=0,n,(m+1)^(m+1)*x^m/(1+m*x)^(m+1)+x*O(x^n)),n)} /* Paul D. Hanna, Sep 30 2011 */
Formula
E.g.f.: exp(x)/(1-x)^3.
a(n) = A001340(n)/2.
a(n) = Sum_{k=0..n} A046716(n, k)*3^(n-k). - Philippe Deléham, Jun 12 2004
a(n) = Sum_{k=0..n} binomial(n, k)*(k+2)!/2. - Philippe Deléham, Jun 19 2004
a(n) = Sum_{k=0..n} binomial(n,k)*(k+1)^(k+1)*(-k)^(n-k). - Paul D. Hanna, Sep 30 2011
O.g.f.: Sum_{n>=0} (n+1)^(n+1)*x^n/(1+n*x)^(n+1) = Sum_{n>=0} a(n)*x^n. - Paul D. Hanna, Sep 30 2011
Conjecture: a(n) + (-n-3)*a(n-1) + (n-1)*a(n-2) = 0. - R. J. Mathar, Dec 03 2012
G.f.: (1-x)/(2*x*Q(0)) - 1/2/x, where Q(k) = 1 - x - x*(k+2)/(1 - x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 22 2013
a(n) = hypergeometric([3, -n], [], -1). - Peter Luschny, Sep 20 2014
First-order recurrence: P(n-1)*a(n) = n*P(n)*a(n-1) + 1 with a(0) = 1, where P(n) = n^2 + n + 1 = A001564(n). - Peter Bala, Jul 26 2021
a(n) = KummerU(-n, -n - 2, 1). - Peter Luschny, May 10 2022
Comments