cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082047 Diagonal sums of number array A082046.

Original entry on oeis.org

1, 2, 7, 24, 69, 170, 371, 736, 1353, 2338, 3839, 6040, 9165, 13482, 19307, 27008, 37009, 49794, 65911, 85976, 110677, 140778, 177123, 220640, 272345, 333346, 404847, 488152, 584669, 695914, 823515, 969216, 1134881, 1322498, 1534183
Offset: 0

Views

Author

Paul Barry, Apr 03 2003

Keywords

Crossrefs

Programs

  • Magma
    [(n+1)*(n*(n-1)*(n^2+16)+30)/30: n in [0..40]]; // G. C. Greubel, Dec 24 2022
    
  • Mathematica
    Table[(n+1)*(n*(n-1)*(n^2+16)+30)/30, {n,0,40}] (* G. C. Greubel, Dec 24 2022 *)
    LinearRecurrence[{6,-15,20,-15,6,-1},{1,2,7,24,69,170},40] (* Harvey P. Dale, Jan 25 2024 *)
  • PARI
    a(n) = (n^5+15*n^3+14*n+30)/30; \\ Michel Marcus, Jan 22 2016
    
  • SageMath
    [(n+1)*(n*(n-1)*(n^2+16)+30)/30 for n in range(41)] # G. C. Greubel, Dec 24 2022

Formula

a(n) = (n^5+15*n^3+14*n+30)/30 = (n+1)*(n^4-n^3+16*n^2-16*n+30)/30.
From G. C. Greubel, Dec 24 2022: (Start)
G.f.: (1 - 4*x + 10*x^2 - 8*x^3 + 5*x^4)/(1-x)^6.
E.g.f.: (1/30)*(30 +30*x +60*x^2 +40*x^3 +10*x^4 +x^5)*exp(x). (End)