A082079 Balanced primes of order four.
491, 757, 1787, 3571, 6337, 6451, 6991, 7741, 7907, 8821, 10141, 10267, 10657, 12911, 15299, 16189, 18223, 18701, 19801, 19843, 19853, 19937, 21961, 22543, 22739, 22807, 23893, 23909, 24767, 25169, 25391, 26591, 26641, 26693, 26713
Offset: 1
Keywords
Examples
p = 491 = (463 + 467 + 479 + 487 + 491 + 499 + 503 + 509 + 521)/9 = 4419/9.
Links
- Aaron Toponce, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
GAP
P:=Filtered([1..50000],IsPrime);; a:=List(Filtered(List([0..3000],k->List([5..13],j->P[j-4+k])), i-> Sum(i)/9=i[5]),m->m[5]); # Muniru A Asiru, Feb 14 2018
-
Mathematica
Do[s3=Prime[n]+Prime[n+1]+Prime[n+2]; s5=Prime[n-1]+s3+Prime[n+3]; s7=Prime[n-2]+s5+Prime[n+4]; s9=Prime[n-3]+s7+Prime[n+5]; If[Equal[s9/9, Prime[n+1]], Print[Prime[n+1]]], {n, 4, 10000}] (* Second program: *) With[{k = 4}, Select[MapIndexed[{Prime[First@ #2 + k], #1} &, Mean /@ Partition[Prime@ Range[3000], 2 k + 1, 1]], SameQ @@ # &][[All, 1]]] (* Michael De Vlieger, Feb 15 2018 *) Select[Partition[Prime[Range[3000]],9,1],Mean[#]==#[[5]]&][[;;,5]] (* Harvey P. Dale, Mar 09 2023 *)
-
PARI
isok(p) = {if (isprime(p), k = primepi(p); if (k > 4, sum(i=k-4, k+4, prime(i)) == 9*p;););} \\ Michel Marcus, Mar 07 2018
Comments