A082108 a(n) = 4*n^2 + 6*n + 1.
1, 11, 29, 55, 89, 131, 181, 239, 305, 379, 461, 551, 649, 755, 869, 991, 1121, 1259, 1405, 1559, 1721, 1891, 2069, 2255, 2449, 2651, 2861, 3079, 3305, 3539, 3781, 4031, 4289, 4555, 4829, 5111, 5401, 5699, 6005, 6319, 6641, 6971, 7309, 7655, 8009, 8371
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
[4*n^2+6*n+1: n in [0..60]]; // G. C. Greubel, Dec 22 2022
-
Mathematica
(* Programs from Michael De Vlieger, Jun 15 2017 *) Table[4n^2 +6n +1, {n,0,50}] LinearRecurrence[{3,-3,1}, {1,11,29}, 51] CoefficientList[Series[(1+8*x-x^2)/(1-x)^3, {x,0,50}], x] (* End *)
-
PARI
a(n)=4*n^2+6*n+1 \\ Charles R Greathouse IV, Oct 07 2015
-
SageMath
[4*n^2+6*n+1 for n in range(61)] # G. C. Greubel, Dec 22 2022
Formula
a(n) = a(n-1) + 8*n + 2. - Vincenzo Librandi, Aug 08 2010
From Michael De Vlieger, Jun 15 2017: (Start)
G.f.: (1 + 8*x - x^2)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
Sum_{k=1..n} a(k-1)/(2*k)! = 1 - 1/(2*n)!. - Robert Israel, Jul 19 2017
E.g.f.: (1 + 10*x + 4*x^2)*exp(x). - G. C. Greubel, Dec 22 2022
Extensions
Incorrect formula and useless examples deleted by R. J. Mathar, Aug 31 2010
Comments