cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082108 a(n) = 4*n^2 + 6*n + 1.

Original entry on oeis.org

1, 11, 29, 55, 89, 131, 181, 239, 305, 379, 461, 551, 649, 755, 869, 991, 1121, 1259, 1405, 1559, 1721, 1891, 2069, 2255, 2449, 2651, 2861, 3079, 3305, 3539, 3781, 4031, 4289, 4555, 4829, 5111, 5401, 5699, 6005, 6319, 6641, 6971, 7309, 7655, 8009, 8371
Offset: 0

Views

Author

Paul Barry, Apr 03 2003

Keywords

Comments

a(n) is the sum of the numerator and denominator of (n+1)/(2*n) + (n+2)/(2*(n+1)); all fractions are reduced and n > 0. - J. M. Bergot, Jun 14 2017

Crossrefs

Programs

  • Magma
    [4*n^2+6*n+1: n in [0..60]]; // G. C. Greubel, Dec 22 2022
    
  • Mathematica
    (* Programs from Michael De Vlieger, Jun 15 2017 *)
    Table[4n^2 +6n +1, {n,0,50}]
    LinearRecurrence[{3,-3,1}, {1,11,29}, 51]
    CoefficientList[Series[(1+8*x-x^2)/(1-x)^3, {x,0,50}], x] (* End *)
  • PARI
    a(n)=4*n^2+6*n+1 \\ Charles R Greathouse IV, Oct 07 2015
    
  • SageMath
    [4*n^2+6*n+1 for n in range(61)] # G. C. Greubel, Dec 22 2022

Formula

a(n) = a(n-1) + 8*n + 2. - Vincenzo Librandi, Aug 08 2010
From Michael De Vlieger, Jun 15 2017: (Start)
G.f.: (1 + 8*x - x^2)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
a(n) = A016742(n) + A008588(n) + 1. - Felix Fröhlich, Jun 16 2017
Sum_{k=1..n} a(k-1)/(2*k)! = 1 - 1/(2*n)!. - Robert Israel, Jul 19 2017
E.g.f.: (1 + 10*x + 4*x^2)*exp(x). - G. C. Greubel, Dec 22 2022

Extensions

Incorrect formula and useless examples deleted by R. J. Mathar, Aug 31 2010