A082110 Array A(n,k) = (k*n)^2 + 5*(k*n) + 1, read by antidiagonals.
1, 1, 1, 1, 7, 1, 1, 15, 15, 1, 1, 25, 37, 25, 1, 1, 37, 67, 67, 37, 1, 1, 51, 105, 127, 105, 51, 1, 1, 67, 151, 205, 205, 151, 67, 1, 1, 85, 205, 301, 337, 301, 205, 85, 1, 1, 105, 267, 415, 501, 501, 415, 267, 105, 1, 1, 127, 337, 547, 697, 751, 697, 547, 337, 127, 1
Offset: 0
Examples
Square array, A(n, k), begins as: 1, 1, 1, 1, 1, 1, 1, 1, 1, ... A000012; 1, 7, 15, 25, 37, 51, 67, 85, 105, ... A082111; 1, 15, 37, 67, 105, 151, 205, 267, 337, ... A082112; 1, 25, 67, 127, 205, 301, 415, 547, 697, ... 1, 37, 105, 205, 337, 501, 697, 925, 1185, ... 1, 51, 151, 301, 501, 751, 1051, 1401, 1801, ... 1, 67, 205, 415, 697, 1051, 1477, 1975, 2545, ... 1, 85, 267, 547, 925, 1401, 1975, 2647, 3417, ... 1, 105, 337, 697, 1185, 1801, 2545, 3417, 4417, ... Antidiagonals, T(n, k), begins as: 1; 1, 1; 1, 7, 1; 1, 15, 15, 1; 1, 25, 37, 25, 1; 1, 37, 67, 67, 37, 1; 1, 51, 105, 127, 105, 51, 1; 1, 67, 151, 205, 205, 151, 67, 1; 1, 85, 205, 301, 337, 301, 205, 85, 1;
Links
- G. C. Greubel, Antidiagonals n = 0..50, flattened
Programs
-
Magma
[(k*(n-k))^2 + 5*(k*(n-k)) + 1: k in [0..n], n in [0..13]]; // G. C. Greubel, Dec 22 2022
-
Mathematica
T[n_, k_]:= (k*(n-k))^2 + 5*(k*(n-k)) + 1; Table[T[n,k], {n,0,13}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 22 2022 *)
-
SageMath
def A082110(n,k): return (k*(n-k))^2 + 5*(k*(n-k)) + 1 flatten([[A082110(n,k) for k in range(n+1)] for n in range(14)]) # G. C. Greubel, Dec 22 2022
Formula
A(n, k) = (k*n)^2 + 5*(k*n) + 1 (Square array).
A(k, n) = A(n, k).
A(2, k) = A082111(k).
A(3, k) = A082112(k).
A(n, n) = T(2*n, n) = A082113(n) (main diagonal).
T(n, k) = (k*(n-k))^2 + 5*k*(n-k) + 1 (number triangle).
Sum_{k=0..n} T(n, k) = A082114(n) (diagonal sums of the array).
From G. C. Greubel, Dec 22 2022: (Start)
T(n, n-k) = T(n, k).
Sum_{k=0..n} (-1)^k*T(n, k) = (1 - 3*n)*(1 + (-1)^n)/2. (End)