A082130 Numbers k such that 2*k-1 and 2*k+1 are semiprimes.
17, 25, 28, 43, 46, 47, 60, 61, 71, 72, 80, 92, 93, 101, 102, 107, 108, 109, 110, 118, 124, 133, 144, 145, 150, 151, 152, 160, 161, 164, 170, 196, 197, 206, 207, 208, 223, 226, 235, 236, 258, 259, 264, 267, 268, 272, 276, 290, 291, 295, 317, 334, 335, 340, 343, 344
Offset: 1
Keywords
Examples
17 is a term because 2*17 - 1 = 33 = 3*11 and 2*17 + 1 = 35 = 5*7 are both semiprimes.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Wikipedia, Dickson's conjecture.
Programs
-
Maple
OSP:= select(numtheory:-bigomega=2, {seq(i,i=3..1000,2)}): R:= map(t -> (t+1)/2, OSP intersect map(`-`,OSP,2)): sort(convert(R,list)); # Robert Israel, Aug 13 2018
-
PARI
isok(n) = (bigomega(2*n-1) == 2) && (bigomega(2*n+1) == 2); \\ Michel Marcus, Jul 16 2017
-
Python
from sympy import factorint from itertools import count, islice def agen(): # generator of terms nxt = 0 for k in count(2, 2): prv, nxt = nxt, sum(factorint(k+1).values()) if prv == nxt == 2: yield k//2 print(list(islice(agen(), 56))) # Michael S. Branicky, Nov 26 2022
Extensions
More terms from Jud McCranie, Apr 04 2003
Comments