A082134 Expansion of e.g.f. x*exp(3*x)*cosh(x).
0, 1, 6, 30, 144, 680, 3168, 14560, 66048, 296064, 1313280, 5772800, 25178112, 109078528, 469819392, 2013388800, 8590196736, 36507779072, 154620002304, 652837519360, 2748784312320, 11544883101696, 48378534690816
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
- Index entries for linear recurrences with constant coefficients, signature (12,-52,96,-64).
Crossrefs
Programs
-
Magma
[n*2^(n-2)*(1+2^(n-1)): n in [0..25]]; // G. C. Greubel, Feb 05 2018
-
Maple
a:= n -> n*binomial(2^(n-1) +1, 2); seq(a(n), n=0..25); # G. C. Greubel, Apr 16 2020
-
Mathematica
Table[n(2^(n-1) +4^(n-1))/2, {n, 0, 22}] (* Michael De Vlieger, Nov 29 2015 *) With[{nmax = 25}, CoefficientList[Series[x*Exp[3*x]*Cosh[x], {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Feb 05 2018 *)
-
PARI
a(n)=n*(2^n--+4^n)/2 \\ Charles R Greathouse IV, Jan 14 2013
-
Sage
[n*binomial(2^(n-1)+1, 2) for n in (0..25)] # G. C. Greubel, Apr 16 2020
Formula
a(n) = n*(2^(n-1) + 4^(n-1))/2.
E.g.f.: x*exp(3*x)*cosh(x).
Conjecture: (n+28)*a(n) + (n-282)*a(n-1) + 2*(-17*n+423)*a(n-2) + 8*(7*n-94)*a(n-3) = 0. - R. J. Mathar, Nov 29 2012
G.f.: x*(10*x^2-6*x+1) / ((2*x-1)^2*(4*x-1)^2). - Colin Barker, Dec 10 2012
Comments