A002697
a(n) = n*4^(n-1).
Original entry on oeis.org
0, 1, 8, 48, 256, 1280, 6144, 28672, 131072, 589824, 2621440, 11534336, 50331648, 218103808, 939524096, 4026531840, 17179869184, 73014444032, 309237645312, 1305670057984, 5497558138880, 23089744183296
Offset: 0
From _Bernard Schott_, Jan 04 2013: (Start)
See the comment about intersection of X and Y.
If A={b,c}, then in P(A) we have:
{b}Inter{b}={b},
{b}Inter{b,c}={b},
{c}Inter{c}={c},
{c}Inter{b,c}={c},
{b,c}Inter{b}={b},
{b,c}Inter{c}={c},
{b,c}Inter{b,c}={b,c}
and : #{b}+ #{b}+ #{c}+ #{c}+ #{b}+ #{c}+ #{b,c} = 8 = 2*4^(2-1) = a(2).
The other intersections are empty.
(End)
- Miklos Bona, Combinatorics of Permutations, Chapman and Hall/CRC, 2004, pp. 1, 43, 64.
- C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 516.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Danny Rorabaugh, Table of n, a(n) for n = 0..1000
- F. Ellermann, Illustration of binomial transforms
- Samuele Giraudo, Pluriassociative algebras I: The pluriassociative operad, arXiv:1603.01040 [math.CO], 2016.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 414
- Milan Janjić, Pascal Matrices and Restricted Words, J. Int. Seq., Vol. 21 (2018), Article 18.5.2.
- Constantinos Kourouzides, A double counting argument on the hypercube graph
- Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
- C. Lanczos, Applied Analysis (Annotated scans of selected pages)
- Aleksandar Petojević, A Note about the Pochhammer Symbol, Mathematica Moravica, Vol. 12-1 (2008), 37-42.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Eric Weisstein's World of Mathematics, Hypercube Graph
- Eric Weisstein's World of Mathematics, Wiener Index
- Index entries for linear recurrences with constant coefficients, signature (8,-16).
Cf.
A000051,
A000302,
A000984,
A001792,
A002457,
A002699,
A027656,
A038231,
A082134,
A083672,
A125145,
A128235,
A133224,
A212698.
-
A002697:=1/(4*z-1)**2; # conjectured by Simon Plouffe in his 1992 dissertation
A002697:=n->n*4^(n-1): seq(A002697(n), n=0..30); # Wesley Ivan Hurt, Mar 30 2014
-
Table[n 4^(n - 1), {n, 0, 30}] (* Harvey P. Dale, Jan 18 2012 *)
LinearRecurrence[{8, -16}, {0, 1}, 30] (* Harvey P. Dale, Jan 18 2012 *)
CoefficientList[Series[x/(1 - 4 x)^2, {x, 0, 20}], x] (* Eric W. Weisstein, Sep 08 2017 *)
-
a(n)=if(n<0,0,n*4^(n-1))
-
[n*4^(n-1) for n in range(22)] # Danny Rorabaugh, Mar 27 2015
A057711
a(0)=0, a(1)=1, a(n) = n*2^(n-2) for n >= 2.
Original entry on oeis.org
0, 1, 2, 6, 16, 40, 96, 224, 512, 1152, 2560, 5632, 12288, 26624, 57344, 122880, 262144, 557056, 1179648, 2490368, 5242880, 11010048, 23068672, 48234496, 100663296, 209715200, 436207616, 905969664, 1879048192, 3892314112, 8053063680
Offset: 0
Bernhard Wolf (wolf(AT)cs.tu-berlin.de), Oct 24 2000
a(1)=6 because the palindromic compositions of n=4 are 4, 1+2+1, 1+1+1+1 and 2+2 and they contain 6 ones. - Silvia Heubach (sheubac(AT)calstatela.edu), Jan 10 2003
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- O. Aichholzer, A. Asinowski, and T. Miltzow, Disjoint compatibility graph of non-crossing matchings of points in convex position, arXiv preprint arXiv:1403.5546 [math.CO], 2014.
- A. Burstein, S. Kitaev, and T. Mansour, Partially ordered patterns and their combinatorial interpretations, PU. M. A. Vol. 19 (2008), No. 2-3, pp. 27-38.
- P. Chinn, R. Grimaldi and S. Heubach, The frequency of summands of a particular size in Palindromic Compositions, Ars Combin. 69 (2003), 65-78.
- Vincent Coll et al., Meander graphs and Frobenius seaweed Lie algebras II, Journal of Generalized Lie Theory and Applications 9.1 (2015).
- Vladimir Dergachev and Alexandre Kirillov, Index of Lie algebras of seaweed type, J. Lie Theory 10.2 (2000): 331-343.
- Alice L. L. Gao and Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, arXiv:1903.08946 [math.CO], 2019.
- Alice L. L. Gao and Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, The Electronic Journal of Combinatorics 26(3) (2019), P3.26.
- M. Ghallab et al., FERRY domain
- M. Ghallab, A. Howe et al., PDDL - The Planning Domain Definition Language, Version 1.2, Technical Report CVC TR-98-003/DCS TR-1165. Yale Center for Computational Vision and Control, 1998.
- Anna Khmelnitskaya, Gerard van der Laan, and Dolf Talmanm, The Number of Ways to Construct a Connected Graph: A Graph-Based Generalization of the Binomial Coefficients, J. Int. Seq. (2023) Art. 23.4.3. See p. 12.
- Eric Weisstein's World of Mathematics, Folded Cube Graph
- Eric Weisstein's World of Mathematics, Maximal Clique
- Eric Weisstein's World of Mathematics, Maximum Clique
- B. Wolf, Creating state sets
- Index entries for linear recurrences with constant coefficients, signature (4,-4).
Pisot sequence P(2, 6) (
A008776), Pisot sequence P(k, k(k+1))
-
[Ceiling(n*2^(n-2)) : n in [0..40]]; // Vincenzo Librandi, Sep 22 2011
-
Join[{0, 1}, Table[n 2^(n - 2), {n, 2, 30}]] (* Eric W. Weisstein, Dec 01 2017 *)
Join[{0, 1}, LinearRecurrence[{4, -4}, {2, 6}, 20]] (* Eric W. Weisstein, Dec 01 2017 *)
CoefficientList[Series[x (1 - 2 x + 2 x^2)/(1 - 2 x)^2, {x, 0, 20}], x] (* Eric W. Weisstein, Dec 01 2017 *)
-
a(n)=ceil(n*2^(n-2)) \\ Charles R Greathouse IV, Oct 31 2011
-
x='x+O('x^50); concat(0, Vec(x*(1-2*x+2*x^2)/(1-2*x)^2)) \\ Altug Alkan, Nov 01 2015
A082135
Expansion of e.g.f. x*exp(4*x)*cosh(x).
Original entry on oeis.org
0, 1, 8, 51, 304, 1765, 10104, 57239, 321248, 1787337, 9864040, 54035707, 294031632, 1590368429, 8556082136, 45812239455, 244255416256, 1297362967441, 6867617339592, 36243304518083, 190746485895920, 1001394643462773
Offset: 0
-
[n*(3^(n-1)+5^(n-1))/2: n in [0..30]]; // G. C. Greubel, Feb 05 2018
-
With[{nn = 20}, CoefficientList[Series[x Exp[4*x] Cosh[x], {x, 0, nn}], x] Range[0, nn]!] (* T. D. Noe, Dec 10 2012 *)
Table[n*(3^(n-1)+5^(n-1))/2, {n,0,30}] (* G. C. Greubel, Feb 05 2018 *)
LinearRecurrence[{16,-94,240,-225},{0,1,8,51},40] (* Harvey P. Dale, Sep 13 2024 *)
-
for(n=0,30, print1(n*(3^(n-1)+5^(n-1))/2, ", ")) \\ G. C. Greubel, Feb 05 2018
A082136
Expansion of e.g.f. x*exp(5*x)*cosh(x).
Original entry on oeis.org
0, 1, 10, 78, 560, 3880, 26400, 177632, 1185280, 7853184, 51699200, 338331136, 2201948160, 14258137088, 91894620160, 589744496640, 3770069811200, 24015941435392, 152494553825280, 965472423378944, 6096346179174400
Offset: 0
-
[n*(4^(n-1)+6^(n-1))/2: n in [0..30]]; // G. C. Greubel, Feb 05 2018
-
With[{nmax = 50}, CoefficientList[Series[x*Exp[5*x]*Cosh[x], {x, 0, nmax}], x]*Range[0, nmax]!] (* or *) Table[n*(4^(n-1)+6^(n-1))/2, {n,0,30}] (* G. C. Greubel, Feb 05 2018 *)
-
for(n=0,30, print1(n*(4^(n-1)+6^(n-1))/2, ", ")) \\ G. C. Greubel, Feb 05 2018
A082133
Expansion of e.g.f. x*exp(2*x)*cosh(x).
Original entry on oeis.org
0, 1, 4, 15, 56, 205, 732, 2555, 8752, 29529, 98420, 324775, 1062888, 3454373, 11160268, 35872275, 114791264, 365897137, 1162261476, 3680494655, 11622614680, 36611236221, 115063885244, 360882185515, 1129718145936
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Mark Shattuck, Enumeration of consecutive patterns in flattened Catalan words, arXiv:2502.10661 [math.CO], 2025. See pp. 3, 6.
- Index entries for linear recurrences with constant coefficients, signature (8,-22,24,-9).
-
List([0..10^2], n->Sum([1..n], k->Sum([1..3], j->Stirling2(n,j)))); # Muniru A Asiru, Feb 06 2018
-
[n*(1^(n-1) + 3^(n-1))/2: n in [0..30]]; // G. C. Greubel, Feb 05 2018
-
with (combinat):seq(sum(sum(stirling2(n, j),j=1..3), k=1..n), n=0..24); # Zerinvary Lajos, Dec 04 2007
-
With[{nn=30},CoefficientList[Series[x Exp[2x]Cosh[x],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Apr 30 2012 *)
Table[n*(1^(n-1) + 3^(n-1))/2, {n,0,30}] (* G. C. Greubel, Feb 05 2018 *)
Table[Sum[Sum[StirlingS2[n,j], {j,1,3}], {k,1,n}], {n,0,30}] (* G. C. Greubel, Feb 07 2018 *)
-
for(n=0,30, print1(n*(1^(n-1) + 3^(n-1))/2, ", ")) \\ G. C. Greubel, Feb 05 2018
A133224
Let P(A) be the power set of an n-element set A and let B be the Cartesian product of P(A) with itself. Remove (y,x) from B when (x,y) is in B and x <> y and let R35 denote the reduced set B. Then a(n) = the sum of the sizes of the union of x and y for every (x,y) in R35.
Original entry on oeis.org
0, 2, 14, 78, 400, 1960, 9312, 43232, 197120, 885888, 3934720, 17307136, 75509760, 327182336, 1409343488, 6039920640, 25770065920, 109522223104, 463857647616, 1958507577344, 8246342451200
Offset: 0
a(2) = 14 because for P(A) = {{},{1},{2},{1,2}} |{} union {1}| = 1, |{} union {2}| = 1, |{} union {1,2}| = 2, |{1} union {2}| = 2, |{1} union {1,2}| = 2 and |{2} union {1,2}| = 2, |{} union {}| = 0, |{1} union {1}| = 1, |{2} union {2}| = 1, |{1,2} union {1,2}| = 2, which sums to 14.
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
- Index entries for linear recurrences with constant coefficients, signature (12,-52,96,-64).
-
[n*(2^(n-2) + 3*2^(2*n-3)): n in [0..30]]; // Vincenzo Librandi, Jun 10 2011
-
LinearRecurrence[{12,-52,96,-64},{0,2,14,78},30] (* Harvey P. Dale, Jan 24 2019 *)
A133789
Let P(A) denote the power set of an n-element set A. Then a(n) = the number of pairs of elements {x,y} of P(A) for which either 0) x and y are disjoint and for which x is not a subset of y and y is not a subset of x, 1) x and y are disjoint and for which either x is a subset of y or y is a subset of x, or 2) x and y intersect but for which x is not a subset of y and y is not a subset of x.
Original entry on oeis.org
0, 1, 4, 16, 70, 316, 1414, 6196, 26590, 112156, 466774, 1923076, 7863310, 31972396, 129459334, 522571156, 2104535230, 8460991036, 33972711094, 136277478436, 546270602350, 2188566048076, 8764718254054, 35090241492916, 140455083984670, 562102715143516
Offset: 0
a(3) = 16 because for P(A) = {{},{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}} we see that
{1} and {2},
{1} and {3},
{2} and {3},
{1} and {2,3},
{2} and {1,3},
{3} and {1,2}
are disjoint, while
{} and {1},
{} and {2},
{} and {3},
{} and {1,2},
{} and {1,3},
{} and {2,3},
{} and {1,2,3}
are disjoint and one is a subset of the other and
{1,2} and {1,3},
{1,2} and {2,3},
{1,3} and {2,3}
are intersecting, but neither is a subset of the other.
Also, through row 8 of Pascal's triangle the a(3)=16 even entries are 2 (so a(0)=0 and a(1)=1) then 4,6,4 (so a(2)=4) then 10,10 then 6,20,6 then 8,28,56,70,56,28,8. [_Aaron Meyerowitz_, Oct 29 2013]
Edited by
N. J. A. Sloane, Jan 20 2008 to incorporate suggestions from several contributors.
A308700
a(n) = n * 2^(n - 2) * (2^(n - 1) - 1).
Original entry on oeis.org
0, 0, 2, 18, 112, 600, 2976, 14112, 65024, 293760, 1308160, 5761536, 25153536, 109025280, 469704704, 2013143040, 8589672448, 36506664960, 154617643008, 652832538624, 2748773826560, 11544861081600, 48378488553472, 202310091276288, 844424829468672, 3518436999168000
Offset: 0
For n = 3, the set X = {1,2,3},
the power set 2^X = {{}, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, X} and the pseudo-graph P represented by 2^X has the following edges, here grouped into...
simple loops:
{1} --- {1}, {2} --- {2}, {3} --- {3} for a total of 3.
double loops:
{1,2} --- {1,2}, {1,3} --- {1,3}, {2,3} --- {2,3} for a total of 6 simple loops.
triple loop:
X --- X for a total of 3 simple loops.
simple edges:
{1} --- {1,2}, {1} --- {1,3}, {1} --- X, {2} --- {1,2}, {2} --- {2,3}, {2} --- X, {3} --- {1,3}, {3} --- {2,3}, {3} --- X, {1,2} --- {1,3}, {1,2} --- {2,3}, {1,3} --- {2,3} for a total of 12.
double edges:
{1,2} --- X, {1,3} --- X, {2,3} --- X for a total of 6 simple edges.
By deleting the loops in P, there remain a total of a(3) = 12 + 6 = 18 edges for the topological graph arising from P.
- A. M. Kozae, A. A. El Atik, A. Elrokh and M. Atef, New types of graphs induced by topological spaces, Journal of Intelligent & Fuzzy Systems, vol. 36, no. 6 (2019), pp. 5125-5134; on Research Gate.
- Index entries for linear recurrences with constant coefficients, signature (12,-52,96,-64).
Cf.
A082134 (total number of edges of the pseudo-graph P).
-
Flat(List([0..25], n->n*2^(n-2)*(2^(n-1)-1)))
-
[n*2^(n-2)*(2^(n-1)-1): n in [0..25]];
-
a:=n->n*2^(n-2)*(2^(n-1)-1): seq(a(n),n=0..25);
-
Table[n 2^(n - 2)(2^(n - 1) - 1), {n, 0, 31}]
-
makelist(n*2^(n-2)*(2^(n-1)-1), n, 0, 25);
-
a(n)=n*2^(n-2)*(2^(n-1)-1);
Showing 1-8 of 8 results.
Comments