cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082135 Expansion of e.g.f. x*exp(4*x)*cosh(x).

Original entry on oeis.org

0, 1, 8, 51, 304, 1765, 10104, 57239, 321248, 1787337, 9864040, 54035707, 294031632, 1590368429, 8556082136, 45812239455, 244255416256, 1297362967441, 6867617339592, 36243304518083, 190746485895920, 1001394643462773
Offset: 0

Views

Author

Paul Barry, Apr 06 2003

Keywords

Comments

Binomial transform of A082134. 4th binomial transform of (0,1,0,3,0,5,0,7,...).

Crossrefs

Programs

  • Magma
    [n*(3^(n-1)+5^(n-1))/2: n in [0..30]]; // G. C. Greubel, Feb 05 2018
  • Mathematica
    With[{nn = 20}, CoefficientList[Series[x Exp[4*x] Cosh[x], {x, 0, nn}], x] Range[0, nn]!] (* T. D. Noe, Dec 10 2012 *)
    Table[n*(3^(n-1)+5^(n-1))/2, {n,0,30}] (* G. C. Greubel, Feb 05 2018 *)
    LinearRecurrence[{16,-94,240,-225},{0,1,8,51},40] (* Harvey P. Dale, Sep 13 2024 *)
  • PARI
    for(n=0,30, print1(n*(3^(n-1)+5^(n-1))/2, ", ")) \\ G. C. Greubel, Feb 05 2018
    

Formula

a(n) = n*(3^(n-1) + 5^(n-1))/2.
E.g.f.: x*exp(4x)*cosh(x).
G.f.: x*(17*x^2-8*x+1) / ((3*x-1)^2*(5*x-1)^2). [Colin Barker, Dec 10 2012]