cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082138 A transform of C(n,3).

Original entry on oeis.org

1, 4, 20, 80, 280, 896, 2688, 7680, 21120, 56320, 146432, 372736, 931840, 2293760, 5570560, 13369344, 31752192, 74711040, 174325760, 403701760, 928514048, 2122317824, 4823449600, 10905190400, 24536678400, 54962159616, 122607894528
Offset: 0

Views

Author

Paul Barry, Apr 06 2003

Keywords

Comments

Fourth row of number array A082137. C(n,3) has e.g.f. (x^3/3!)exp(x). The transform averages the binomial and inverse binomial transforms.

Examples

			a(0) = (2^(-1) + 0^0/2)*C(3,0) = 2*(1/2) = 1 (using 0^0=1).
		

Crossrefs

Programs

  • GAP
    a:=[4,20,80,280];; for n in [5..30] do a[n]:=8*a[n-1]-24*a[n-2] +32*a[n-3]-16*a[n-4]; od; Concatenation([1], a);
  • Magma
    [(Ceiling(Binomial(n+3, 3)*2^(n-1))) : n in [0..30]]; // Vincenzo Librandi, Sep 22 2011
    
  • Maple
    [seq (ceil(binomial(n+3,3)*2^(n-1)),n=0..30)]; # Zerinvary Lajos, Nov 01 2006
  • Mathematica
    Join[{1}, LinearRecurrence[{8,-24,32,-16}, {4,20,80,280}, 30]] (* G. C. Greubel, Jul 23 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-4*x+12*x^2-16*x^3 + 8*x^4)/(1-2*x)^4) \\ G. C. Greubel, Jul 23 2019
    
  • Sage
    ((1-4*x+12*x^2-16*x^3+8*x^4)/(1-2*x)^4).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jul 23 2019
    

Formula

a(n) = (2^(n-1) + 0^n/2)*C(n+3, n).
a(n) = Sum_{j=0..n} C(n+3, j+3)*C(j+3, 3)*(1 + (-1)^j)/2.
G.f.: (1 - 4*x + 12*x^2 - 16*x^3 + 8*x^4)/(1-2*x)^4.
E.g.f.: (x^3/3!)*exp(x)*cosh(x) (preceded by 3 zeros).
a(n) = ceiling(binomial(n+3,3)*2^(n-1)). - Zerinvary Lajos, Nov 01 2006
From Amiram Eldar, Jan 07 2022: (Start)
Sum_{n>=0} 1/a(n) = 12*log(2) - 7.
Sum_{n>=0} (-1)^n/a(n) = 108*log(3/2) - 43. (End)