cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082140 A transform of binomial(n,6).

Original entry on oeis.org

1, 7, 56, 336, 1680, 7392, 29568, 109824, 384384, 1281280, 4100096, 12673024, 38019072, 111132672, 317521920, 889061376, 2444918784, 6615662592, 17641766912, 46425702400, 120706826240, 310388981760, 790081044480
Offset: 0

Views

Author

Paul Barry, Apr 06 2003

Keywords

Comments

Seventh row of number array A082137. C(n,6) has e.g.f. (x^6/6!)exp(x). The transform averages the binomial and inverse binomial transforms.

Examples

			a(0) = (2^(-1) + 0^0/2)*binomial(6,0) = 2*(1/2) = 1 (use 0^0 = 1).
		

Crossrefs

For n>0, a(n) = 1/2 * A002409(n).

Programs

  • Magma
    [(2^(n-1) + 0^n/2)*Binomial(n+6,n): n in [0..30]]; // G. C. Greubel, Feb 05 2018
  • Maple
    [seq (ceil(binomial(n+6,6)*2^(n-1)),n=0..22)]; # Zerinvary Lajos, Nov 01 2006
  • Mathematica
    Drop[With[{nmax = 56}, CoefficientList[Series[x^6*Exp[x]*Cosh[x]/6!, {x, 0, nmax}], x]*Range[0, nmax]!], 5] (* or *) Join[{1}, Table[2^(n-1)* Binomial[n+6,n], {n,1,30}]] (* G. C. Greubel, Feb 05 2018 *)
    LinearRecurrence[{14,-84,280,-560,672,-448,128},{1,7,56,336,1680,7392,29568,109824},30] (* Harvey P. Dale, Jul 18 2023 *)
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace(x^6*exp(x)*cosh(x)/6!)) \\ G. C. Greubel, Feb 05 2018
    

Formula

a(n) = (2^(n-1) + 0^n/2)*C(n+6,n).
a(n) = Sum_{j=0..n} C(n+6, j+6)*C(j+6, 6)*(1+(-1)^j)/2.
G.f.: (1 - 7*x + 42*x^2 - 140*x^3 + 280*x^4 - 336*x^5 + 224*x^6 - 64*x^7)/ (1-2*x)^7.
E.g.f.: (x^6/6!)*exp(x)*cosh(x) (with 6 leading zeros).
a(n) = ceiling(binomial(n+6,6)*2^(n-1)). - Zerinvary Lajos, Nov 01 2006
From Amiram Eldar, Jan 07 2022: (Start)
Sum_{n>=0} 1/a(n) = 89/5 - 24*log(2).
Sum_{n>=0} (-1)^n/a(n) = 5832*log(3/2) - 11819/5. (End)