cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082143 First subdiagonal of number array A082137.

Original entry on oeis.org

1, 3, 20, 140, 1008, 7392, 54912, 411840, 3111680, 23648768, 180590592, 1384527872, 10650214400, 82158796800, 635361361920, 4924050554880, 38233804308480, 297374033510400, 2316387208396800, 18067820225495040, 141101072237199360, 1103153837490831360
Offset: 0

Views

Author

Paul Barry, Apr 06 2003

Keywords

Examples

			a(0)=(2^(-1)+(0^0)/2)C(1,0)=2*(1/2)=1 (use 0^0=1).
		

Crossrefs

Programs

  • Haskell
    a082143 0 = 1
    a082143 n = (a000079 $ n - 1) * (a001700 n)
    -- Reinhard Zumkeller, Jan 15 2015
    
  • Magma
    [(2^(n-1) + 0^n/2)*Binomial(2*n+1,n): n in [0..30]]; // G. C. Greubel, Feb 05 2018
  • Mathematica
    Join[{1}, Table[2^(n-1)* Binomial[2*n+1,n], {n,1,30}]] (* G. C. Greubel, Feb 05 2018 *)
  • PARI
    for(n=0,30, print1((2^(n-1) + 0^n/2)*Binomial(2*n+1,n), ", ")) \\ G. C. Greubel, Feb 05 2018
    

Formula

a(n) = (2^(n-1) + 0^n/2)*C(2n+1, n).
Conjecture: (n+1)*a(n) +4*(-2*n-1)*a(n-1)=0. - R. J. Mathar, Oct 19 2014
From Reinhard Zumkeller, Jan 15 2015: (Start)
a(n) = A000079(n-1) * A001700(n), for n > 0.
a(n) = A069720(n+1)/2. (End)
From Amiram Eldar, Jan 16 2024: (Start)
Sum_{n>=0} 1/a(n) = 64*arcsin(1/(2*sqrt(2)))/(7*sqrt(7)) + 1/7.
Sum_{n>=0} (-1)^n/a(n) = 32*log(2)/27 - 1/9. (End)