cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082145 A subdiagonal of number array A082137.

Original entry on oeis.org

1, 5, 42, 336, 2640, 20592, 160160, 1244672, 9674496, 75246080, 585761792, 4564377600, 35602145280, 277970595840, 2172375244800, 16992801914880, 133035751833600, 1042374243778560, 8173537721057280, 64136851016908800, 503613708419727360, 3956964851869286400
Offset: 0

Views

Author

Paul Barry, Apr 06 2003

Keywords

Examples

			a(0) = ( 2^(-1)+(0^0)/2 )*C(3,0) = ( 1/2+1/2 )*1 = 1 (use 0^0 = 1). - clarified by _Jon Perry_, Oct 29 2014
		

Crossrefs

Programs

  • Magma
    [(2^(n-1)+(0^n)/2)*Binomial(2*n+3, n): n in [0..30]]; // Vincenzo Librandi, Oct 30 2014
    
  • Maple
    Z:=(1-3*z-sqrt(1-4*z))/sqrt(1-4*z)/64: Zser:=series(Z, z=0, 32): seq(coeff(Zser*2^(n+1), z, n), n=4..23); # Zerinvary Lajos, Jan 01 2007
  • Mathematica
    Join[{1}, Table[2^(n-1)* Binomial[2*n+3,n], {n,1,30}]] (* G. C. Greubel, Feb 05 2018 *)
  • PARI
    for(n=0,30, print1((2^(n-1) + 0^n/2)*Binomial(2*n+3,n), ", ")) \\ G. C. Greubel, Feb 05 2018

Formula

a(n) = ( 2^(n-1) + (0^n)/2 )*binomial(2*n+3, n).
(n+3)*a(n) +2*(-7*n-13)*a(n-1) +24*(2*n+1)*a(n-2)=0. - R. J. Mathar, Oct 29 2014
From Amiram Eldar, Jan 16 2024: (Start)
Sum_{n>=0} 1/a(n) = 37/7 - 208*arcsin(1/(2*sqrt(2)))/(7*sqrt(7)).
Sum_{n>=0} (-1)^n/a(n) = 296*log(2)/27 - 61/9. (End)