cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A089599 G.f.: (1+x^5+x^7+x^8+x^10+x^15)/((1-x^2)(1-x^3)(1-x^4)(1-x^6)^2(1-x^9)).

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 5, 4, 8, 9, 13, 15, 23, 24, 35, 40, 52, 60, 79, 87, 112, 127, 155, 177, 216, 240, 290, 326, 382, 430, 503, 557, 648, 720, 822, 914, 1041, 1144, 1298, 1428, 1600, 1760, 1967, 2146, 2392, 2609, 2882, 3142, 3463, 3752, 4127, 4468, 4882, 5282, 5760, 6202
Offset: 0

Views

Author

N. J. A. Sloane, Dec 31 2003

Keywords

Comments

Poincaré series [or Poincare series] (or Molien series) for (P[x_0, x_1] ⊗ P[x_0, x_1] ⊗ P[x_0, x_1] )^(S_3).

References

  • A. Adem and R. J. Milgram, Cohomology of Finite Groups, Springer-Verlag, 2nd. ed., 2004; p. 200.

Crossrefs

Programs

  • PARI
    Vec((1+x^5+x^7+x^8+x^10+x^15)/((1-x^2)*(1-x^3)*(1-x^4)*(1-x^6)^2*(1-x^9)) + O(x^100)) \\ Michel Marcus, Mar 19 2014

Formula

G.f.: (1-x+x^5-x^9+x^10)/((1-x)^2*(1-x^2)*(1-x^4)*(1-x^6)*(1-x^9)*(1+x+x^2)). See also the NAME. - Wolfdieter Lang, Mar 19 2014

A091434 Poincaré series [or Poincare series] (or Molien series) for a certain four-fold wreath product P_4.

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 5, 4, 9, 10, 15, 18, 29, 31, 47, 56, 76, 91, 124, 143, 191, 226, 286, 340, 430, 499, 622, 729, 885, 1035, 1250, 1443, 1729, 1997, 2354, 2713, 3184, 3635, 4239, 4834, 5580, 6344, 7291, 8236, 9422, 10619, 12059, 13555, 15338, 17153, 19335, 21574, 24189, 26921, 30088, 33355, 37165
Offset: 0

Views

Author

N. J. A. Sloane, Mar 17 2004

Keywords

References

  • A. Adem and R. J. Milgram, Cohomology of Finite Groups, Springer-Verlag, 2nd. ed., 2004, p. 202.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( (1 +x^7 +x^8 +x^9 +x^10 +x^11 -x^24 -x^25 -x^26 -x^27 -x^28 -x^35)/((1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6)^2*(1-x^8)*(1-x^9)*(1-x^12)) )); // G. C. Greubel, Jan 31 2020
    
  • Maple
    seq(coeff(series((1 +x^7 +x^8 +x^9 +x^10 +x^11 -x^24 -x^25 -x^26 -x^27 -x^28 -x^35)/((1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6)^2*(1-x^8)*(1-x^9)*(1-x^12)), x, n+1), x, n), n = 0..70); # G. C. Greubel, Jan 31 2020
  • Mathematica
    CoefficientList[Series[(1 +x^7 +x^8 +x^9 +x^10 +x^11 -x^24 -x^25 -x^26 -x^27 -x^28 -x^35)/((1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6)^2*(1-x^8)*(1-x^9)*(1-x^12)), {x,0,70}], x] (* G. C. Greubel, Jan 31 2020 *)
  • PARI
    my(x='x+O('x^70)); Vec((1 +x^7 +x^8 +x^9 +x^10 +x^11 -x^24 -x^25 -x^26 -x^27 -x^28 -x^35)/((1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6)^2*(1-x^8)*(1-x^9)*(1-x^12))) \\ G. C. Greubel, Jan 31 2020
    
  • Sage
    def A091434_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1 +x^7 +x^8 +x^9 +x^10 +x^11 -x^24 -x^25 -x^26 -x^27 -x^28 -x^35)/((1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6)^2*(1-x^8)*(1-x^9)*(1-x^12)) ).list()
    A091434_list(70) # G. C. Greubel, Jan 31 2020

Formula

G.f.: (x^30 + x^25 + x^23 + x^22 + x^21 + 2*x^20 + x^19 + x^18 + x^17 + x^16 + 2*x^15 + x^14 + x^13 + x^12 + x^11 + 2*x^10 + x^9 + x^8 + x^7 + x^5 + 1) / ((1 - x^2)*(1 - x^3)*(1 - x^4)*(1 - x^6)^2*(1 - x^8)*(1 - x^9)*(1 - x^12)).

Extensions

G.f. and data corrected by N. J. A. Sloane, Jan 05 2017

A091726 Poincaré series [or Poincare series] (or Molien series) for a certain five-fold wreath product P_5.

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 5, 4, 9, 10, 16, 19, 31, 34, 53, 64, 89, 109, 152, 180, 246, 298, 388, 473, 612, 732, 935, 1125, 1402, 1685, 2086, 2478, 3041, 3610, 4366, 5169, 6213, 7295, 8712, 10202, 12068, 14083, 16571, 19221, 22500, 26014, 30244, 34850, 40338, 46256, 53313
Offset: 0

Views

Author

N. J. A. Sloane, Mar 17 2004

Keywords

References

  • A. Adem and R. J. Milgram, Cohomology of Finite Groups, Springer-Verlag, 2nd. ed., 2004, p. 202.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1 -2*x +x^2 +x^4 -x^5 +x^8 -x^9 +x^10 -x^13 +2*x^14 -x^15 +x^16 -x^17 +2*x^18 -2*x^19 +2*x^20 -x^21 +2*x^22 -2*x^23 + 2*x^24 -x^25 +x^26 -x^27 +2*x^28 -x^29 +x^32 -x^33 +x^34 -x^37 +x^38 +x^40 -2*x^41 +x^42)/( (1-x)^2*(1-x^2)*(1-x^3)*(1-x^6)*(1-x^8)*(1-x^9)*(1-x^12)*(1-x^10)*(1-x^15)), {x,0,60}], x] (* G. C. Greubel, Jan 31 2020 *)
  • PARI
    Vec((x^50 +x^45 +x^43 +x^42 +x^41 +2*x^40 +2*x^39 +2*x^38 +2*x^37 +3*x^36 +3*x^35 +3*x^34 +3*x^33 +4*x^32 +4*x^31 +4*x^30 +5*x^29 +5*x^28 +5*x^27 +5*x^26 +6*x^25 +5*x^24 +5*x^23 +5*x^22 +5*x^21 +4*x^20 +4*x^19 +4*x^18 +3*x^17 +3*x^16 +3*x^15 +3*x^14 +2*x^13 +2*x^12 +2*x^11 +2*x^10 +x^9 +x^8 +x^7 +x^5 +1) / ((1 -x^2)*(1 -x^3)*(1 -x^4)*(1 -x^6)^2*(1 -x^8)*(1 -x^9)*(1 -x^12)*(1 -x^10)*(1 -x^15)) + O(x^60)) \\ Colin Barker, Mar 15 2015

Formula

G.f.: ( x^50 + x^45 + x^43 + x^42 + x^41 + 2*x^40 + 2*x^39 + 2*x^38 + 2*x^37 + 3*x^36 + 3*x^35 + 3*x^34 + 3*x^33 + 4*x^32 + 4*x^31 + 4*x^30 + 5*x^29 + 5*x^28 + 5*x^27 + 5*x^26 + 6*x^25 + 5*x^24 + 5*x^23 + 5*x^22 + 5*x^21 + 4*x^20 + 4*x^19 + 4*x^18 + 3*x^17 + 3*x^16 + 3*x^15 + 3*x^14 + 2*x^13 + 2*x^12 + 2*x^11 + 2*x^10 + x^9 + x^8 + x^7 + x^5 + 1 ) / ((1 - x^2)*(1 - x^3)*(1 - x^4)*(1 - x^6)^2*(1 - x^8)*(1 - x^9)*(1 - x^12)*(1 - x^10)*(1 - x^15)).

Extensions

Three typos (unbalanced parentheses) in g.f. fixed by Colin Barker, Mar 15 2015

A091769 Poincaré series [or Poincare series] (or Molien series) for a certain six-fold wreath product P_6.

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 5, 4, 9, 10, 16, 19, 32, 35, 55, 67, 95, 117, 166, 199, 276, 339, 449, 555, 731, 889, 1154, 1413, 1794, 2193, 2764, 3347, 4181, 5058, 6233, 7519, 9208, 11027, 13411, 16015, 19307, 22970, 27538, 32582, 38851, 45805, 54265, 63747, 75170, 87896, 103179
Offset: 0

Views

Author

N. J. A. Sloane, Mar 17 2004

Keywords

References

  • A. Adem and R. J. Milgram, Cohomology of Finite Groups, Springer-Verlag, 2nd. ed., 2004, p. 203.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1-x+x^2-x^3+x^4-x^5+x^6-x^7+x^8-x^9+x^10) * (1-2*x+x^2+ x^5-x^6+x^10-x^11+2*x^12-2*x^13+x^14-x^15+x^16+x^17-x^18+x^19-x^21+2*x^22 - 2*x^23+3*x^24-2*x^25+2*x^26-x^27+x^29-x^30 +x^31+x^32-x^33+x^34-2*x^35+2*x^36 - x^37+x^38-x^42+x^43+x^46-2*x^47+x^48) / ((1-x)^3*(1-x^3)*(1-x^4)*(1-x^6)*(1- x^8)*(1-x^9)*(1-x^12)*(1-x^10)*(1-x^15)*(1-x^18)), {x,0,60}], x] (* G. C. Greubel, Jan 31 2020 *)

Formula

G.f.: ( x^75 + x^70 + x^68 + x^67 + x^66 + 2*x^65 + 2*x^64 + 2*x^63 + 3*x^62 + 4*x^61 + 4*x^60 + 5*x^59 + 5*x^58 + 6*x^57 + 7*x^56 + 8*x^55 + 10*x^54 + 10*x^53 + 11*x^52 + 13*x^51 + 14*x^50 + 15*x^49 + 17*x^48 + 18*x^47 + 19*x^46 + 20*x^45 + 21*x^44 + 22*x^43 + 23*x^42 + 23*x^41 + 24*x^40 + 23*x^39 + 24*x^38 + 24*x^37 + 23*x^36 + 24*x^35 + 23*x^34 + 23*x^33 + 22*x^32 + 21*x^31 + 20*x^30 + 19*x^29 + 18*x^28 + 17*x^27 + 15*x^26 + 14*x^25 + 13*x^24 + 11*x^23 + 10*x^22 + 10*x^21 + 8*x^20 + 7*x^19 + 6*x^18 + 5*x^17 + 5*x^16 + 4*x^15 + 4*x^14 + 3*x^13 + 2*x^12 + 2*x^11 + 2*x^10 + x^9 + x^8 + x^7 + x^5 + 1 ) / ( (1 - x^2)*(1- x^3)*(1 - x^4)*(1 - x^6)^2*( 1- x^8)*(1 - x^9)*(1 - x^12)^2 *(1 - x^10)*(1 - x^15)*(1 - x^18)).
Showing 1-4 of 4 results.