cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A082146 Expansion of g.f.: (1+x^5)/((1-x^2)*(1-x^3)*(1-x^4)*(1-x^6)).

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 4, 3, 6, 6, 8, 9, 13, 12, 17, 18, 22, 24, 30, 30, 38, 40, 46, 50, 59, 60, 71, 75, 84, 90, 102, 105, 120, 126, 138, 147, 163, 168, 187, 196, 212, 224, 244, 252, 276, 288, 308, 324, 349, 360, 389, 405, 430, 450, 480, 495, 530, 550, 580, 605, 641, 660, 701, 726
Offset: 0

Views

Author

N. J. A. Sloane, Dec 30 2003

Keywords

Comments

Poincaré series [or Poincare series] (or Molien series) for (P[x_0,x_1] ⊗ P[x_0,x_1])^(S_2).

References

  • A. Adem and R. J. Milgram, Cohomology of Finite Groups, Springer-Verlag, 2nd. ed., 2004; p. 199.

Crossrefs

Cf. A010875 (n mod 6). Contains A006002 and A212683. - Luce ETIENNE, Aug 14 2018

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 70);
    Coefficients(R!( (1-x^10)/(&*[1-x^j: j in [2..6]]) )); // G. C. Greubel, Apr 02 2023
    
  • Maple
    seq(coeff(series((1+x^5)/((1-x^2)*(1-x^3)*(1-x^4)*(1-x^6)), x,n+1),x,n),n=0..70); # Muniru A Asiru, Aug 15 2018
  • Mathematica
    CoefficientList[Series[(1-x^10)/Product[1-x^(j+1), {j,5}], {x,0,70}], x] (* G. C. Greubel, Apr 02 2023 *)
  • PARI
    Vec((1+x^5)/((1-x^2)*(1-x^3)*(1-x^4)*(1-x^6)) + O(x^100)) \\ Michel Marcus, Mar 19 2014
    
  • SageMath
    def A082146_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-x^10)/prod(1-x^j for j in range(2,7)) ).list()
    A082146_list(70) # G. C. Greubel, Apr 02 2023

Formula

a(n) = a(n-1) + a(n-3) - a(n-5) + a(n-6) - 2*a(n-7) + a(n-8) - a(n-9) + a(n-11) + a(n-13) - a(n-14).
G.f.: ( 1+x^2+x^4-x-x^3 ) / ( (1+x^2)*(1-x+x^2)*(1+x)^2*(1+x+x^2)^2*(1-x)^4 ). - R. J. Mathar, Oct 11 2011
a(n) = (120*floor(n/6)^3 + 60*(m+5)*floor(n/6)^2 - 20*(m^5-13*m^4 +60*m^3-116*m^2+74*m-18)*floor(n/6) - (19*m^5-245*m^4+1125*m^3-2185*m^2+1496*m-210) + (m^5-15*m^4+75*m^3-135*m^2+44*m+30)*(-1)^floor(n/6))/240 where m = (n mod 6). - Luce ETIENNE, Aug 14 2018

A089599 G.f.: (1+x^5+x^7+x^8+x^10+x^15)/((1-x^2)(1-x^3)(1-x^4)(1-x^6)^2(1-x^9)).

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 5, 4, 8, 9, 13, 15, 23, 24, 35, 40, 52, 60, 79, 87, 112, 127, 155, 177, 216, 240, 290, 326, 382, 430, 503, 557, 648, 720, 822, 914, 1041, 1144, 1298, 1428, 1600, 1760, 1967, 2146, 2392, 2609, 2882, 3142, 3463, 3752, 4127, 4468, 4882, 5282, 5760, 6202
Offset: 0

Views

Author

N. J. A. Sloane, Dec 31 2003

Keywords

Comments

Poincaré series [or Poincare series] (or Molien series) for (P[x_0, x_1] ⊗ P[x_0, x_1] ⊗ P[x_0, x_1] )^(S_3).

References

  • A. Adem and R. J. Milgram, Cohomology of Finite Groups, Springer-Verlag, 2nd. ed., 2004; p. 200.

Crossrefs

Programs

  • PARI
    Vec((1+x^5+x^7+x^8+x^10+x^15)/((1-x^2)*(1-x^3)*(1-x^4)*(1-x^6)^2*(1-x^9)) + O(x^100)) \\ Michel Marcus, Mar 19 2014

Formula

G.f.: (1-x+x^5-x^9+x^10)/((1-x)^2*(1-x^2)*(1-x^4)*(1-x^6)*(1-x^9)*(1+x+x^2)). See also the NAME. - Wolfdieter Lang, Mar 19 2014

A091434 Poincaré series [or Poincare series] (or Molien series) for a certain four-fold wreath product P_4.

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 5, 4, 9, 10, 15, 18, 29, 31, 47, 56, 76, 91, 124, 143, 191, 226, 286, 340, 430, 499, 622, 729, 885, 1035, 1250, 1443, 1729, 1997, 2354, 2713, 3184, 3635, 4239, 4834, 5580, 6344, 7291, 8236, 9422, 10619, 12059, 13555, 15338, 17153, 19335, 21574, 24189, 26921, 30088, 33355, 37165
Offset: 0

Views

Author

N. J. A. Sloane, Mar 17 2004

Keywords

References

  • A. Adem and R. J. Milgram, Cohomology of Finite Groups, Springer-Verlag, 2nd. ed., 2004, p. 202.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( (1 +x^7 +x^8 +x^9 +x^10 +x^11 -x^24 -x^25 -x^26 -x^27 -x^28 -x^35)/((1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6)^2*(1-x^8)*(1-x^9)*(1-x^12)) )); // G. C. Greubel, Jan 31 2020
    
  • Maple
    seq(coeff(series((1 +x^7 +x^8 +x^9 +x^10 +x^11 -x^24 -x^25 -x^26 -x^27 -x^28 -x^35)/((1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6)^2*(1-x^8)*(1-x^9)*(1-x^12)), x, n+1), x, n), n = 0..70); # G. C. Greubel, Jan 31 2020
  • Mathematica
    CoefficientList[Series[(1 +x^7 +x^8 +x^9 +x^10 +x^11 -x^24 -x^25 -x^26 -x^27 -x^28 -x^35)/((1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6)^2*(1-x^8)*(1-x^9)*(1-x^12)), {x,0,70}], x] (* G. C. Greubel, Jan 31 2020 *)
  • PARI
    my(x='x+O('x^70)); Vec((1 +x^7 +x^8 +x^9 +x^10 +x^11 -x^24 -x^25 -x^26 -x^27 -x^28 -x^35)/((1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6)^2*(1-x^8)*(1-x^9)*(1-x^12))) \\ G. C. Greubel, Jan 31 2020
    
  • Sage
    def A091434_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1 +x^7 +x^8 +x^9 +x^10 +x^11 -x^24 -x^25 -x^26 -x^27 -x^28 -x^35)/((1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6)^2*(1-x^8)*(1-x^9)*(1-x^12)) ).list()
    A091434_list(70) # G. C. Greubel, Jan 31 2020

Formula

G.f.: (x^30 + x^25 + x^23 + x^22 + x^21 + 2*x^20 + x^19 + x^18 + x^17 + x^16 + 2*x^15 + x^14 + x^13 + x^12 + x^11 + 2*x^10 + x^9 + x^8 + x^7 + x^5 + 1) / ((1 - x^2)*(1 - x^3)*(1 - x^4)*(1 - x^6)^2*(1 - x^8)*(1 - x^9)*(1 - x^12)).

Extensions

G.f. and data corrected by N. J. A. Sloane, Jan 05 2017

A091769 Poincaré series [or Poincare series] (or Molien series) for a certain six-fold wreath product P_6.

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 5, 4, 9, 10, 16, 19, 32, 35, 55, 67, 95, 117, 166, 199, 276, 339, 449, 555, 731, 889, 1154, 1413, 1794, 2193, 2764, 3347, 4181, 5058, 6233, 7519, 9208, 11027, 13411, 16015, 19307, 22970, 27538, 32582, 38851, 45805, 54265, 63747, 75170, 87896, 103179
Offset: 0

Views

Author

N. J. A. Sloane, Mar 17 2004

Keywords

References

  • A. Adem and R. J. Milgram, Cohomology of Finite Groups, Springer-Verlag, 2nd. ed., 2004, p. 203.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1-x+x^2-x^3+x^4-x^5+x^6-x^7+x^8-x^9+x^10) * (1-2*x+x^2+ x^5-x^6+x^10-x^11+2*x^12-2*x^13+x^14-x^15+x^16+x^17-x^18+x^19-x^21+2*x^22 - 2*x^23+3*x^24-2*x^25+2*x^26-x^27+x^29-x^30 +x^31+x^32-x^33+x^34-2*x^35+2*x^36 - x^37+x^38-x^42+x^43+x^46-2*x^47+x^48) / ((1-x)^3*(1-x^3)*(1-x^4)*(1-x^6)*(1- x^8)*(1-x^9)*(1-x^12)*(1-x^10)*(1-x^15)*(1-x^18)), {x,0,60}], x] (* G. C. Greubel, Jan 31 2020 *)

Formula

G.f.: ( x^75 + x^70 + x^68 + x^67 + x^66 + 2*x^65 + 2*x^64 + 2*x^63 + 3*x^62 + 4*x^61 + 4*x^60 + 5*x^59 + 5*x^58 + 6*x^57 + 7*x^56 + 8*x^55 + 10*x^54 + 10*x^53 + 11*x^52 + 13*x^51 + 14*x^50 + 15*x^49 + 17*x^48 + 18*x^47 + 19*x^46 + 20*x^45 + 21*x^44 + 22*x^43 + 23*x^42 + 23*x^41 + 24*x^40 + 23*x^39 + 24*x^38 + 24*x^37 + 23*x^36 + 24*x^35 + 23*x^34 + 23*x^33 + 22*x^32 + 21*x^31 + 20*x^30 + 19*x^29 + 18*x^28 + 17*x^27 + 15*x^26 + 14*x^25 + 13*x^24 + 11*x^23 + 10*x^22 + 10*x^21 + 8*x^20 + 7*x^19 + 6*x^18 + 5*x^17 + 5*x^16 + 4*x^15 + 4*x^14 + 3*x^13 + 2*x^12 + 2*x^11 + 2*x^10 + x^9 + x^8 + x^7 + x^5 + 1 ) / ( (1 - x^2)*(1- x^3)*(1 - x^4)*(1 - x^6)^2*( 1- x^8)*(1 - x^9)*(1 - x^12)^2 *(1 - x^10)*(1 - x^15)*(1 - x^18)).
Showing 1-4 of 4 results.