cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082169 Deterministic completely defined quasi-acyclic automata with 2 inputs, n transient and k absorbing labeled states.

Original entry on oeis.org

1, 1, 1, 1, 4, 7, 1, 9, 56, 142, 1, 16, 207, 1780, 5941, 1, 25, 544, 9342, 103392, 428856, 1, 36, 1175, 32848, 709893, 9649124, 47885899, 1, 49, 2232, 91150, 3142528, 82305144, 1329514816, 7685040448, 1, 64, 3871, 215892, 10682325, 440535696, 13598786979, 254821480596, 1681740027657
Offset: 0

Views

Author

Valery A. Liskovets, Apr 09 2003

Keywords

Comments

Array read by antidiagonals: (0,1),(0,2),(1,1),(0,3),...
The first column is A082157.

Examples

			The array begins:
         1,          1,           1,           1,          1, ...;
         1,          4,           9,          16,         25, ...;
         7,         56,         207,         544,       1175, ...;
       142,       1780,        9342,       32848,      91150, ...;
      5941,     103392,      709893,     3142528,   10682325, ...;
    428856,    9649124,    82305144,   440535696, 1775027000, ...;
  47885899, 1329514816, 13598786979, 85529171200, ...;
Antidiagonal triangle begins as:
  1;
  1,  1;
  1,  4,    7;
  1,  9,   56,   142;
  1, 16,  207,  1780,    5941;
  1, 25,  544,  9342,  103392,   428856;
  1, 36, 1175, 32848,  709893,  9649124,   47885899;
  1, 49, 2232, 91150, 3142528, 82305144, 1329514816, 7685040448;
		

Crossrefs

Programs

  • Magma
    function A(n,k)
      if n eq 0 then return 1;
      else return (&+[(-1)^(n-j+1)*Binomial(n,j)*(k+j)^(2*n-2*j)*A(j,k): j in [0..n-1]]);
      end if;
    end function;
    A082169:= func< n,k | A(k,n-k+1) >;
    [A082169(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 19 2024
    
  • Mathematica
    T[0, ]= 1; T[n, k_]:= T[n, k]= Sum[Binomial[n, i] (-1)^(n-i-1)*(i + k)^(2n-2i) T[i, k], {i, 0, n-1}];
    Table[T[n-k-1, k], {n, 1, 10}, {k, n-1, 1, -1}]//Flatten (* Jean-François Alcover, Aug 29 2019 *)
  • SageMath
    @CachedFunction
    def A(n,k):
        if n==0: return 1
        else: return sum((-1)^(n-j+1)*binomial(n,j)*(k+j)^(2*n-2*j)*A(j,k) for j in range(n))
    def A082169(n,k): return A(k,n-k+1)
    flatten([[A082169(n,k) for k in range(n+1)] for n in range(12)]) # G. C. Greubel, Jan 19 2024

Formula

T(n, k) = T_2(n, k) where T_2(0, k) = 1, T_2(n, k) = Sum_{i=0..n-1} (-1)^(n-i-1)*binomial(n, i)*(i+k)^(2*(n-i))*T_2(i, k), n > 0.