A082169 Deterministic completely defined quasi-acyclic automata with 2 inputs, n transient and k absorbing labeled states.
1, 1, 1, 1, 4, 7, 1, 9, 56, 142, 1, 16, 207, 1780, 5941, 1, 25, 544, 9342, 103392, 428856, 1, 36, 1175, 32848, 709893, 9649124, 47885899, 1, 49, 2232, 91150, 3142528, 82305144, 1329514816, 7685040448, 1, 64, 3871, 215892, 10682325, 440535696, 13598786979, 254821480596, 1681740027657
Offset: 0
Examples
The array begins: 1, 1, 1, 1, 1, ...; 1, 4, 9, 16, 25, ...; 7, 56, 207, 544, 1175, ...; 142, 1780, 9342, 32848, 91150, ...; 5941, 103392, 709893, 3142528, 10682325, ...; 428856, 9649124, 82305144, 440535696, 1775027000, ...; 47885899, 1329514816, 13598786979, 85529171200, ...; Antidiagonal triangle begins as: 1; 1, 1; 1, 4, 7; 1, 9, 56, 142; 1, 16, 207, 1780, 5941; 1, 25, 544, 9342, 103392, 428856; 1, 36, 1175, 32848, 709893, 9649124, 47885899; 1, 49, 2232, 91150, 3142528, 82305144, 1329514816, 7685040448;
Links
- G. C. Greubel, Antidiagonals n = 0..50, flattened
- Valery A. Liskovets, Exact enumeration of acyclic automata, Proc. 15th Conf. "Formal Power Series and Algebr. Combin. (FPSAC'03)", 2003.
- Valery A. Liskovets, Exact enumeration of acyclic deterministic automata, Discrete Appl. Math., 154, No.3 (2006), 537-551.
Programs
-
Magma
function A(n,k) if n eq 0 then return 1; else return (&+[(-1)^(n-j+1)*Binomial(n,j)*(k+j)^(2*n-2*j)*A(j,k): j in [0..n-1]]); end if; end function; A082169:= func< n,k | A(k,n-k+1) >; [A082169(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 19 2024
-
Mathematica
T[0, ]= 1; T[n, k_]:= T[n, k]= Sum[Binomial[n, i] (-1)^(n-i-1)*(i + k)^(2n-2i) T[i, k], {i, 0, n-1}]; Table[T[n-k-1, k], {n, 1, 10}, {k, n-1, 1, -1}]//Flatten (* Jean-François Alcover, Aug 29 2019 *)
-
SageMath
@CachedFunction def A(n,k): if n==0: return 1 else: return sum((-1)^(n-j+1)*binomial(n,j)*(k+j)^(2*n-2*j)*A(j,k) for j in range(n)) def A082169(n,k): return A(k,n-k+1) flatten([[A082169(n,k) for k in range(n+1)] for n in range(12)]) # G. C. Greubel, Jan 19 2024
Formula
T(n, k) = T_2(n, k) where T_2(0, k) = 1, T_2(n, k) = Sum_{i=0..n-1} (-1)^(n-i-1)*binomial(n, i)*(i+k)^(2*(n-i))*T_2(i, k), n > 0.
Comments