A082161
Number of deterministic completely defined initially connected acyclic automata with 2 inputs and n transient unlabeled states (and a unique absorbing state).
Original entry on oeis.org
1, 3, 16, 127, 1363, 18628, 311250, 6173791, 142190703, 3737431895, 110577492346, 3641313700916, 132214630355700, 5251687490704524, 226664506308709858, 10568175957745041423, 529589006347242691143, 28395998790096299447521
Offset: 1
a(2)=3 since the following transition diagrams represent all three initially connected acyclic automata with two input letters x and y, two transient states 1 (initial) and 2 and the absorbing state 0:
1 == x, y==> 2 == x, y ==> 0 == x, y ==> 0, 1 -- x --> 2 == x, y ==> 0 == x, y ==> 0
1 -- y --> 0
and the last one with x and y interchanged.
- Roland Bacher and Christophe Reutenauer, The number of right ideals of given codimension over a finite field, in Noncommutative Birational Geometry, Representations and Combinatorics, edited by Arkady. Berenstein and Vladimir. Retakha, Contemporary Mathematics, Vol. 592, 2013.
- Vaclav Kotesovec, Table of n, a(n) for n = 1..350
- David Callan, A determinant of Stirling cycle numbers counts unlabeled acyclic single-source automata, arXiv:0704.0004 [math.CO], 2007.
- Manosij Ghosh Dastidar and Michael Wallner, Asymptotics of relaxed k-ary trees, arXiv:2404.08415 [math.CO], 2024. See p. 1.4.
- Andrew Elvey Price, Wenjie Fang, and Michael Wallner, Compacted binary trees admit a stretched exponential, arXiv:1908.11181 [math.CO], 2019-2020; J. Combin. Theory Ser. A 177 (2021), Paper No. 105306, 40 pp.
- Antoine Genitrini, Bernhard Gittenberger, Manuel Kauers and Michael Wallner, Asymptotic enumeration of compacted binary trees of bounded right height, arXiv:1703.10031 [math.CO], 2017; J. Combin. Theory Ser. A 172 (2020), 105177, 49 pp.
- Valery A. Liskovets, Exact enumeration of acyclic automata, Proc. 15th Conf. "Formal Power Series and Algebr. Combin. (FPSAC'03)", 2003.
- Valery A. Liskovets, Exact enumeration of acyclic deterministic automata, Discrete Appl. Math., 154, No.3 (2006), 537-551.
- Fedor Petrov, On a generating function and vector ν of length n, answer to question on MathOverflow (2024).
- Michael Wallner, A bijection of plane increasing trees with relaxed binary trees of right height at most one, arXiv:1706.07163 [math.CO], 2017-2018; Theoret. Comput. Sci. 755 (2019), 1-12.
-
a[n_]:= a[n]= If[n==0, 1, Coefficient[1-Sum[a[k]*x^k*Product[1-j*x, {j, 1, k+1}], {k, 0, n-1}], x, n]];
Table[a[n], {n, 18}] (* Jean-François Alcover, Dec 15 2014, after Paul D. Hanna *)
-
{a(n)=if(n==0,1,polcoeff(1-sum(k=0,n-1,a(k)*x^k*prod(j=1,k+1,1-j*x+x*O(x^n))),n))} \\ Paul D. Hanna, Jan 07 2005
-
{a(n)=local(A);if(n<1,0,A=x+x*O(x^n); for(k=0,n,A+=polcoeff(A,k)*x^k*(1-prod(i=1,k+1,1-i*x))); polcoeff(A,n))} /* Michael Somos, Jan 16 2005 */
-
upto(n) = my(v=vector(n+1, i, i==1)); for(i=1, n, for(j=i+1, n+1, v[j] += i*v[j-1])); v[2..#v] \\ Mikhail Kurkov, Oct 25 2024
-
from functools import cache
@cache
def b(n, k):
if n == 0: return k + 1
return sum(b(j, k)*b(n-j-1, k+j) for j in range(n))
def A082161(n): return b(n, 0)
print([A082161(n) for n in range(1, 19)]) # G. C. Greubel, Jan 18 2024
A082157
Number of deterministic completely defined acyclic automata with 2 inputs and n transient labeled states (and a unique absorbing state).
Original entry on oeis.org
1, 1, 7, 142, 5941, 428856, 47885899, 7685040448, 1681740027657, 482368131521920, 175856855224091311, 79512800815739448576, 43701970591391787395197, 28714779850695689959247872
Offset: 0
a(2)=7 since the following transition diagrams represent all seven acyclic automata with two input letters x and y, two transient states 1 and 2, and the absorbing state 0:
1==x,y==>0==x,y==>0<==x,y==2, 1==x,y==>2==x,y==>0==x,y==>0,
the same with 1 and 2 interchanged,
1--x-->2==x,y==>0==x,y==>0
1--y-->0
and the last one with x and y and/or 1 and 2 interchanged.
- Vaclav Kotesovec, Table of n, a(n) for n = 0..220
- V. A. Liskovets, Exact enumeration of acyclic automata, Proc. 15th Conf. Formal Power Series and Algebr. Combin. (FPSAC'03), 2003.
- V. A. Liskovets, Exact enumeration of acyclic deterministic automata, Discrete Appl. Math., 154, No.3 (2006), 537-551.
-
a[0] = 1; a[n_] := a[n] = Sum[-(-1)^(n-k)*Binomial[n, k]*(k+1)^(2*(n-k))*a[k], {k, 0, n-1}]; Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Dec 15 2014, translated from PARI *)
-
{a(n)=polcoeff(1-sum(k=0, n-1, a(k)*x^k/(1+(k+1)^2*x+x*O(x^n))^(k+1)), n)} \\ Paul D. Hanna
-
{a(n)=if(n==0,1,sum(k=0,n-1,-(-1)^(n-k)*binomial(n,k)*(k+1)^(2*(n-k))*a(k)))}
A082170
Deterministic completely defined quasi-acyclic automata with 3 inputs, n transient and k absorbing labeled states.
Original entry on oeis.org
1, 1, 1, 1, 8, 15, 1, 27, 368, 1024, 1, 64, 2727, 53672, 198581, 1, 125, 11904, 710532, 18417792, 85102056, 1, 216, 38375, 4975936, 386023509, 12448430408, 68999174203, 1, 343, 101520, 23945000, 3977848832, 381535651512, 14734002979456, 95264160938080
Offset: 0
The array begins:
1, 1, 1, 1, ...;
1, 8, 27, 64, ...;
15, 368, 2727, 11904, ...;
1024, 53672, 710532, 4975936, ...;
198581, 18417792, 386023509, 3977848832, ...;
85102056, 12448430408, 381535651512, 5451751738944, ...;
68999174203, 14734002979456, 624245820664563, ...;
Antidiagonals begin as:
1;
1, 1;
1, 8, 15;
1, 27, 368, 1024;
1, 64, 2727, 53672, 198581;
1, 125, 11904, 710532, 18417792, 85102056;
1, 216, 38375, 4975936, 386023509, 12448430408, 68999174203;
- G. C. Greubel, Antidiagonals n = 0..50, flattened
- Valery A. Liskovets, Exact enumeration of acyclic automata, Proc. 15th Conf. "Formal Power Series and Algebr. Combin. (FPSAC'03)", 2003.
- Valery A. Liskovets, Exact enumeration of acyclic deterministic automata, Discrete Appl. Math., 154, No.3 (2006), 537-551.
-
function A(n,k)
if n eq 0 then return 1;
else return (&+[(-1)^(n-j+1)*Binomial(n,j)*(k+j)^(3*n-3*j)*A(j,k): j in [0..n-1]]);
end if;
end function;
A082170:= func< n,k | A(k,n-k+1) >;
[A082170(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 19 2024
-
T[0, ] = 1; T[n, k_]:= T[n, k] = Sum[Binomial[n, i] (-1)^(n-i-1)*(i + k)^(3n-3i) T[i, k], {i,0,n-1}];
Table[T[n-k-1, k], {n, 1, 9}, {k, n-1, 1, -1}]//Flatten (* Jean-François Alcover, Aug 29 2019 *)
-
@CachedFunction
def A(n,k):
if n==0: return 1
else: return sum((-1)^(n-j+1)*binomial(n,j)*(k+j)^(3*n-3*j)*A(j,k) for j in range(n))
def A082170(n,k): return A(k,n-k+1)
flatten([[A082170(n,k) for k in range(n+1)] for n in range(12)]) # G. C. Greubel, Jan 19 2024
A082171
A subclass of quasi-acyclic automata with 2 inputs, n transient and k absorbing labeled states; square array T(n,k) read by descending antidiagonals (n >= 0 and k >= 1).
Original entry on oeis.org
1, 1, 3, 1, 8, 39, 1, 15, 176, 1206, 1, 24, 495, 7784, 69189, 1, 35, 1104, 29430, 585408, 6416568, 1, 48, 2135, 84600, 2791125, 67481928, 881032059, 1, 63, 3744, 204470, 9841728, 389244600, 11111547520, 168514815360, 1, 80, 6111, 437616, 28569765, 1627740504, 75325337235, 2483829653544, 42934911510249
Offset: 0
Array T(n,k) (with rows n >= 0 and columns k >= 1) begins:
1, 1, 1, 1, 1, ...;
3, 8, 15, 24, 35, ...;
39, 176, 495, 1104, 2135, ...;
1206, 7784, 29430, 84600, 204470, ...;
69189, 585408, 2791125, 9841728, 28569765, ...;
6416568, 67481928, 389244600, 1627740504, ...;
881032059, 11111547520, 75325337235, ...;
...
Triangular array A(n,k) = T(k-1, n-k+1) (with rows n >= 1 and columns k = 1..n), read from the antidiagonals downwards of square array T:
1;
1, 3,
1, 8, 39;
1, 15, 176, 1206;
1, 24, 495, 7784, 69189;
1, 35, 1104, 29430, 585408, 6416568;
1, 48, 2135, 84600, 2791125, 67481928, 881032059;
...
- G. C. Greubel, Antidiagonals n = 0..50, flattened
- Valery A. Liskovets, Exact enumeration of acyclic automata, Proc. 15th Conf. "Formal Power Series and Algebr. Combin. (FPSAC'03)", 2003.
- Valery A. Liskovets, Exact enumeration of acyclic deterministic automata, Discrete Appl. Math., 154, No. 3 (2006), 537-551.
-
function A(n,k)
if n eq 0 then return 1;
else return (&+[(-1)^(n-j+1)*Binomial(n,j)*((k+j+1)^2-1)^(n-j)*A(j,k): j in [0..n-1]]);
end if;
end function;
A082171:= func< n,k | A(k,n-k+1) >;
[A082171(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 19 2024
-
T[0, ] = 1; T[n, k_] := T[n, k] = Sum[Binomial[n, i] (-1)^(n - i - 1)*((i + k + 1)^2 - 1)^(n - i)*T[i, k], {i, 0, n - 1}];
Table[T[n - k - 1, k], {n, 1, 10}, {k, n - 1, 1, -1}] // Flatten (* Jean-François Alcover, Aug 29 2019 *)
-
lista(nn,kk)={my(T=matrix(nn+1,kk)); for(n=1, nn+1, for(k=1, kk, T[n,k] = if(n==1, 1, sum(i=0,n-2, binomial(n-1, i)*(-1)^(n-i-2)*((i + k + 1)^2 - 1)^(n-i-1)*T[i+1, k])))); T;} \\ Petros Hadjicostas, Mar 07 2021
-
@CachedFunction
def A(n,k):
if n==0: return 1
else: return sum((-1)^(n-j+1)*binomial(n,j)*((k+j+1)^2-1)^(n-j)*A(j,k) for j in range(n))
def A082171(n,k): return A(k,n-k+1)
flatten([[A082171(n,k) for k in range(n+1)] for n in range(12)]) # G. C. Greubel, Jan 19 2024
A103240
Unreduced numerators of the elements T(n,k)/(n-k)!, read by rows, of the triangular matrix P^-1, which is the inverse of the matrix defined by P(n,k) = (-k^2)^(n-k)/(n-k)! for n >= k >= 1.
Original entry on oeis.org
1, 1, 1, 7, 4, 1, 142, 56, 9, 1, 5941, 1780, 207, 16, 1, 428856, 103392, 9342, 544, 25, 1, 47885899, 9649124, 709893, 32848, 1175, 36, 1, 7685040448, 1329514816, 82305144, 3142528, 91150, 2232, 49, 1, 1681740027657, 254821480596, 13598786979
Offset: 1
Rows of unreduced fractions T(n,k)/(n-k)! begin:
[1/0!],
[1/1!, 1/0!],
[7/2!, 4/1!, 1/0!],
[142/3!, 56/2!, 9/1!, 1/0!],
[5941/4!, 1780/3!, 207/2!, 16/1!, 1/0!],
[428856/5!, 103392/4!, 9342/3!, 544/2!, 25/1!, 1/0!],
[47885899/6!, 9649124/5!, 709893/4!, 32848/3!, 1175/2!, 36/1!, 1/0!], ...
forming the inverse of matrix P where P(n,k) = A103245(n,k)/(n-k)!:
[1/0!],
[-1/1!, 1/0!],
[1/2!, -4/1!, 1/0!],
[-1/3!, 16/2!, -9/1!, 1/0!],
[1/4!, -64/3!, 81/2!, -16/1!, 1/0!], ...
-
{T(n,k)=my(P);if(n>=k&k>=1, P=matrix(n,n,r,c,if(r>=c,(-c^2)^(r-c)/(r-c)!))); return(if(n
Showing 1-5 of 5 results.
Comments