cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A082161 Number of deterministic completely defined initially connected acyclic automata with 2 inputs and n transient unlabeled states (and a unique absorbing state).

Original entry on oeis.org

1, 3, 16, 127, 1363, 18628, 311250, 6173791, 142190703, 3737431895, 110577492346, 3641313700916, 132214630355700, 5251687490704524, 226664506308709858, 10568175957745041423, 529589006347242691143, 28395998790096299447521
Offset: 1

Views

Author

Valery A. Liskovets, Apr 09 2003

Keywords

Comments

Coefficients T_2(n,k) form the array A082169. These automata have no nontrivial automorphisms (by states).
Also counts the relaxed compacted binary trees of size n. A relaxed compacted binary tree of size n is a directed acyclic graph consisting of a binary tree with n internal nodes, one leaf, and n pointers. It is constructed from a binary tree of size n, where the first leaf in a post-order traversal is kept and all other leaves are replaced by pointers. These links may point to any node that has already been visited by the post-order traversal. See the Genitrini et al. link. - Michael Wallner, Apr 20 2017

Examples

			a(2)=3 since the following transition diagrams represent all three initially connected acyclic automata with two input letters x and y, two transient states 1 (initial) and 2 and the absorbing state 0:
  1 == x, y==> 2 == x, y ==> 0 == x, y ==> 0, 1 -- x --> 2 == x, y ==> 0 == x, y ==> 0
  1 -- y --> 0
and the last one with x and y interchanged.
		

References

  • Roland Bacher and Christophe Reutenauer, The number of right ideals of given codimension over a finite field, in Noncommutative Birational Geometry, Representations and Combinatorics, edited by Arkady. Berenstein and Vladimir. Retakha, Contemporary Mathematics, Vol. 592, 2013.

Crossrefs

Programs

  • Mathematica
    a[n_]:= a[n]= If[n==0, 1, Coefficient[1-Sum[a[k]*x^k*Product[1-j*x, {j, 1, k+1}], {k, 0, n-1}], x, n]];
    Table[a[n], {n, 18}] (* Jean-François Alcover, Dec 15 2014, after Paul D. Hanna *)
  • PARI
    {a(n)=if(n==0,1,polcoeff(1-sum(k=0,n-1,a(k)*x^k*prod(j=1,k+1,1-j*x+x*O(x^n))),n))} \\ Paul D. Hanna, Jan 07 2005
    
  • PARI
    {a(n)=local(A);if(n<1,0,A=x+x*O(x^n); for(k=0,n,A+=polcoeff(A,k)*x^k*(1-prod(i=1,k+1,1-i*x))); polcoeff(A,n))} /* Michael Somos, Jan 16 2005 */
    
  • PARI
    upto(n) = my(v=vector(n+1, i, i==1)); for(i=1, n, for(j=i+1, n+1, v[j] += i*v[j-1])); v[2..#v] \\ Mikhail Kurkov, Oct 25 2024
  • Python
    from functools import cache
    @cache
    def b(n, k):
        if n == 0: return k + 1
        return sum(b(j, k)*b(n-j-1, k+j) for j in range(n))
    def A082161(n): return b(n, 0)
    print([A082161(n) for n in range(1, 19)]) # G. C. Greubel, Jan 18 2024
    

Formula

a(n) = c_2(n)/(n-1)! where c_2(n) = T_2(n, 1) - Sum_{j=1..n-1} binomial(n-1, j-1)*T_2(n-j, j+1)*c_2(j), and T_2(0, k) = 1, T_2(n, k) = Sum_{i=0..n-1} binomial(n, i)*(-1)^(n-i-1)*(i+k)^(2*n-2*i)*T_2(i, k), n > 0.
Equals column 0 of triangle A102086. Also equals main diagonal of A102316: a(n) = A102086(n, 0) = A102316(n, n). - Paul D. Hanna, Jan 07 2005
G.f.: 1 = Sum_{n>=0} a(n)*x^n*prod_{k=1, n+1} (1-k*x) for n>0 with a(0)=1. a(n) = -Sum_{k=1, [(n+1)/2]} A008276(n-k+1, k)*a(n-k) where A008276 is Stirling numbers of the first kind. Thus G.f.: 1 = (1-x) + 1*x*(1-x)(1-2x) + 3*x^2*(1-x)(1-2x)(1-3x) + ... + a(n)*x^n*(1-x)(1-2x)(1-3x)*..*(1-(n+1)*x) + ... with a(0)=1. - Paul D. Hanna, Jan 14 2005
a(n) is the determinant of the n X n matrix with (i, j) entry = StirlingCycle[i+1, 2i-j]. - David Callan, Jul 20 2005
a(n) = b(n,0) where b(0,p) = p+1 and b(n+1,p) = Sum_{i=0..n} b(i,p)*b(n-i,p+i) for n>=1. - Michael Wallner, Apr 20 2017
From Michael Wallner, Jan 31 2022: (Start)
a(n) = r(n,n) where r(n,m)=(m+1)*r(n-1,m)+r(n,m-1) for n>=m>=1, r(n,m)=0 for n=0.
a(n) = Theta(n!*4^n*exp(3*a1*n^(1/3))*n) for large n, where a1=-2.338... is the largest root of the Airy function Ai(x) of the first kind; see [Elvey Price, Fang, Wallner 2021]. (End)

A082157 Number of deterministic completely defined acyclic automata with 2 inputs and n transient labeled states (and a unique absorbing state).

Original entry on oeis.org

1, 1, 7, 142, 5941, 428856, 47885899, 7685040448, 1681740027657, 482368131521920, 175856855224091311, 79512800815739448576, 43701970591391787395197, 28714779850695689959247872
Offset: 0

Views

Author

Valery A. Liskovets, Apr 09 2003

Keywords

Comments

This is the first column of the array A082169.

Examples

			a(2)=7 since the following transition diagrams represent all seven acyclic automata with two input letters x and y, two transient states 1 and 2, and the absorbing state 0:
1==x,y==>0==x,y==>0<==x,y==2, 1==x,y==>2==x,y==>0==x,y==>0,
the same with 1 and 2 interchanged,
1--x-->2==x,y==>0==x,y==>0
1--y-->0
and the last one with x and y and/or 1 and 2 interchanged.
		

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[-(-1)^(n-k)*Binomial[n, k]*(k+1)^(2*(n-k))*a[k], {k, 0, n-1}]; Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Dec 15 2014, translated from PARI *)
  • PARI
    {a(n)=polcoeff(1-sum(k=0, n-1, a(k)*x^k/(1+(k+1)^2*x+x*O(x^n))^(k+1)), n)} \\ Paul D. Hanna
    
  • PARI
    {a(n)=if(n==0,1,sum(k=0,n-1,-(-1)^(n-k)*binomial(n,k)*(k+1)^(2*(n-k))*a(k)))}

Formula

a(n) = a_2(n) where a_2(0) := 1, a_2(n) := sum(binomial(n, i)*(-1)^(n-i-1)*(i+1)^(2*n-2*i)*a_2(i), i=0..n-1), n>0.
1 = Sum_{n>=0} a(n)*exp(-(1+n)^2*x)*x^n/n!. - Vladeta Jovovic, Jul 18 2005
From Paul D. Hanna, Jun 04 2011: (Start)
1 = Sum_{n>=0} a(n)*x^n/(1 + (n+1)^2*x)^(n+1).
1 = Sum_{n>=0} a(n)*C(n+m-1,n)*x^n/(1 + (n+1)^2*x)^(n+m) for m>=1.
log(1+x) = Sum_{n>=1} a(n)*x^n/(1 + (n+1)^2*x)^n/n. (End)

A082170 Deterministic completely defined quasi-acyclic automata with 3 inputs, n transient and k absorbing labeled states.

Original entry on oeis.org

1, 1, 1, 1, 8, 15, 1, 27, 368, 1024, 1, 64, 2727, 53672, 198581, 1, 125, 11904, 710532, 18417792, 85102056, 1, 216, 38375, 4975936, 386023509, 12448430408, 68999174203, 1, 343, 101520, 23945000, 3977848832, 381535651512, 14734002979456, 95264160938080
Offset: 0

Views

Author

Valery A. Liskovets, Apr 09 2003

Keywords

Comments

Array read by antidiagonals: (0,1),(0,2),(1,1),(0,3),...
The first column is A082158.

Examples

			The array begins:
            1,              1,               1,             1, ...;
            1,              8,              27,            64, ...;
           15,            368,            2727,         11904, ...;
         1024,          53672,          710532,       4975936, ...;
       198581,       18417792,       386023509,    3977848832, ...;
     85102056,    12448430408,    381535651512, 5451751738944, ...;
  68999174203, 14734002979456, 624245820664563, ...;
Antidiagonals begin as:
  1;
  1,   1;
  1,   8,    15;
  1,  27,   368,    1024;
  1,  64,  2727,   53672,    198581;
  1, 125, 11904,  710532,  18417792,    85102056;
  1, 216, 38375, 4975936, 386023509, 12448430408, 68999174203;
		

Crossrefs

Programs

  • Magma
    function A(n,k)
      if n eq 0 then return 1;
      else return (&+[(-1)^(n-j+1)*Binomial(n,j)*(k+j)^(3*n-3*j)*A(j,k): j in [0..n-1]]);
      end if;
    end function;
    A082170:= func< n,k | A(k,n-k+1) >;
    [A082170(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 19 2024
    
  • Mathematica
    T[0, ] = 1; T[n, k_]:= T[n, k] = Sum[Binomial[n, i] (-1)^(n-i-1)*(i + k)^(3n-3i) T[i, k], {i,0,n-1}];
    Table[T[n-k-1, k], {n, 1, 9}, {k, n-1, 1, -1}]//Flatten (* Jean-François Alcover, Aug 29 2019 *)
  • SageMath
    @CachedFunction
    def A(n,k):
        if n==0: return 1
        else: return sum((-1)^(n-j+1)*binomial(n,j)*(k+j)^(3*n-3*j)*A(j,k) for j in range(n))
    def A082170(n,k): return A(k,n-k+1)
    flatten([[A082170(n,k) for k in range(n+1)] for n in range(12)]) # G. C. Greubel, Jan 19 2024

Formula

T(n, k) = T_3(n, k) where T_3(0, k) = 1, T_3(n, k) = Sum_{i=0..n-1} (-1)^(n-i-1)*binomial(n, i)*(i+k)^(3*n-3*i)*T_3(i, k), n > 0.

A082171 A subclass of quasi-acyclic automata with 2 inputs, n transient and k absorbing labeled states; square array T(n,k) read by descending antidiagonals (n >= 0 and k >= 1).

Original entry on oeis.org

1, 1, 3, 1, 8, 39, 1, 15, 176, 1206, 1, 24, 495, 7784, 69189, 1, 35, 1104, 29430, 585408, 6416568, 1, 48, 2135, 84600, 2791125, 67481928, 881032059, 1, 63, 3744, 204470, 9841728, 389244600, 11111547520, 168514815360, 1, 80, 6111, 437616, 28569765, 1627740504, 75325337235, 2483829653544, 42934911510249
Offset: 0

Views

Author

Valery A. Liskovets, Apr 09 2003

Keywords

Comments

Array read by descending antidiagonals: (0,1), (0,2), (1,1), (0,3), ...
The first column is A082159; i.e., T(n,k=1) = A082159(n). [The number n of transient states in the name of square array T(n,k) does not include the pre-dead transient state, which is, however, included in the name of A082159. See Section 3.1 in Liskovets (2006). - Petros Hadjicostas, Mar 07 2021]

Examples

			Array T(n,k) (with rows n >= 0 and columns k >= 1) begins:
          1,           1,           1,          1,        1, ...;
          3,           8,          15,         24,       35, ...;
         39,         176,         495,       1104,     2135, ...;
       1206,        7784,       29430,      84600,   204470, ...;
      69189,      585408,     2791125,    9841728, 28569765, ...;
    6416568,    67481928,   389244600, 1627740504, ...;
  881032059, 11111547520, 75325337235, ...;
  ...
Triangular array A(n,k) = T(k-1, n-k+1) (with rows n >= 1 and columns k = 1..n), read from the antidiagonals downwards of square array T:
  1;
  1,  3,
  1,  8,   39;
  1, 15,  176,  1206;
  1, 24,  495,  7784,   69189;
  1, 35, 1104, 29430,  585408,  6416568;
  1, 48, 2135, 84600, 2791125, 67481928, 881032059;
  ...
		

Crossrefs

Programs

  • Magma
    function A(n,k)
      if n eq 0 then return 1;
      else return (&+[(-1)^(n-j+1)*Binomial(n,j)*((k+j+1)^2-1)^(n-j)*A(j,k): j in [0..n-1]]);
      end if;
    end function;
    A082171:= func< n,k | A(k,n-k+1) >;
    [A082171(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 19 2024
    
  • Mathematica
    T[0, ] = 1; T[n, k_] := T[n, k] = Sum[Binomial[n, i] (-1)^(n - i - 1)*((i + k + 1)^2 - 1)^(n - i)*T[i, k], {i, 0, n - 1}];
    Table[T[n - k - 1, k], {n, 1, 10}, {k, n - 1, 1, -1}] // Flatten (* Jean-François Alcover, Aug 29 2019 *)
  • PARI
    lista(nn,kk)={my(T=matrix(nn+1,kk)); for(n=1, nn+1, for(k=1, kk, T[n,k] = if(n==1, 1, sum(i=0,n-2, binomial(n-1, i)*(-1)^(n-i-2)*((i + k + 1)^2 - 1)^(n-i-1)*T[i+1, k])))); T;} \\ Petros Hadjicostas, Mar 07 2021
    
  • SageMath
    @CachedFunction
    def A(n,k):
        if n==0: return 1
        else: return sum((-1)^(n-j+1)*binomial(n,j)*((k+j+1)^2-1)^(n-j)*A(j,k) for j in range(n))
    def A082171(n,k): return A(k,n-k+1)
    flatten([[A082171(n,k) for k in range(n+1)] for n in range(12)]) # G. C. Greubel, Jan 19 2024

Formula

T(n, k) = S_2(n, k) where S_2(0, k) := 1 and S_2(n, k) := Sum_{i=0..n-1} binomial(n, i)*(-1)^(n-i-1)*((i + k + 1)^2 - 1)^(n-i)*S_2(i, k) for n > 0.

Extensions

Name clarified by Petros Hadjicostas, Mar 07 2021

A103240 Unreduced numerators of the elements T(n,k)/(n-k)!, read by rows, of the triangular matrix P^-1, which is the inverse of the matrix defined by P(n,k) = (-k^2)^(n-k)/(n-k)! for n >= k >= 1.

Original entry on oeis.org

1, 1, 1, 7, 4, 1, 142, 56, 9, 1, 5941, 1780, 207, 16, 1, 428856, 103392, 9342, 544, 25, 1, 47885899, 9649124, 709893, 32848, 1175, 36, 1, 7685040448, 1329514816, 82305144, 3142528, 91150, 2232, 49, 1, 1681740027657, 254821480596, 13598786979
Offset: 1

Views

Author

Paul D. Hanna, Feb 02 2005

Keywords

Comments

Define a triangular matrix P where P(n,k) = (-k^2)^(n-k)/(n-k)!; then M = P*D*P^-1 = A102086 satisfies M^2 = SHIFTUP(M) where D is the diagonal matrix consisting of {1,2,3,...}. The operation SHIFTUP(M) shifts each column of M up 1 row. Essentially equal to square array A082169 as a triangular matrix. The first column is A082157 (enumerates acyclic automata with 2 inputs).

Examples

			Rows of unreduced fractions T(n,k)/(n-k)! begin:
  [1/0!],
  [1/1!, 1/0!],
  [7/2!, 4/1!, 1/0!],
  [142/3!, 56/2!, 9/1!, 1/0!],
  [5941/4!, 1780/3!, 207/2!, 16/1!, 1/0!],
  [428856/5!, 103392/4!, 9342/3!, 544/2!, 25/1!, 1/0!],
  [47885899/6!, 9649124/5!, 709893/4!, 32848/3!, 1175/2!, 36/1!, 1/0!], ...
forming the inverse of matrix P where P(n,k) = A103245(n,k)/(n-k)!:
  [1/0!],
  [-1/1!, 1/0!],
  [1/2!, -4/1!, 1/0!],
  [-1/3!, 16/2!, -9/1!, 1/0!],
  [1/4!, -64/3!, 81/2!, -16/1!, 1/0!], ...
		

Crossrefs

Programs

  • PARI
    {T(n,k)=my(P);if(n>=k&k>=1, P=matrix(n,n,r,c,if(r>=c,(-c^2)^(r-c)/(r-c)!))); return(if(n
    				

Formula

For n > k >= 1: 0 = Sum_{m=k..n} C(n-k, m-k)*(-m^2)^(n-m)*T(m, k).
For n > k >= 1: 0 = Sum_{j=k..n} C(n-k, j-k)*(-k^2)^(j-k)*T(n, j).
Showing 1-5 of 5 results.