cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A082162 Number of deterministic completely defined initially connected acyclic automata with 3 inputs and n transient unlabeled states (and a unique absorbing state).

Original entry on oeis.org

1, 7, 139, 5711, 408354, 45605881, 7390305396, 1647470410551, 485292763088275, 183049273155939442, 86211400693272461866
Offset: 1

Views

Author

Valery A. Liskovets, Apr 09 2003

Keywords

Comments

Coefficients T_3(n,k) form the array A082170. These automata have no nontrivial automorphisms (by states).

References

  • R. Bacher, C. Reutenauer, The number of right ideals of given codimension over a finite field, in Noncommutative Birational Geometry, Representations and Combinatorics, edited by Arkady. Berenstein and Vladimir. Retakha, Contemporary Mathematics, Vol. 592, 2013.

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := T[n, k] = If[nJean-François Alcover, Dec 15 2014 *)

Formula

a(n) = c_3(n)/(n-1)! where c_3(n) = T_3(n, 1) - sum(binomial(n-1, j-1)*T_3(n-j, j+1)*c_3(j), j=1..n-1) and T_3(0, k) = 1, T_3(n, k) = sum(binomial(n, i)*(-1)^(n-i-1)*(i+k)^(3*n-3*i)*T_3(i, k), i=0..n-1), n>0.
Equals column 0 of triangle A102098. Also equals main diagonal of A102400: a(n) = A102098(n, 0) = A102400(n, n). - Paul D. Hanna, Jan 07 2005

Extensions

More terms from Paul D. Hanna, Jan 07 2005

A082158 Number of deterministic completely defined acyclic automata with 3 inputs and n transient labeled states (and a unique absorbing state).

Original entry on oeis.org

1, 1, 15, 1024, 198581, 85102056, 68999174203, 95264160938080, 207601975572545961, 674354204416939196800, 3122476748685067008205511, 19884561572783089348189507584, 169123749545536919971662851459485, 1874777145334671354828947023095675904, 26531967154935836079418311035871122812275
Offset: 0

Views

Author

Valery A. Liskovets, Apr 09 2003

Keywords

Comments

This is the first column of the array A082170.

Crossrefs

Programs

  • Magma
    function a(n) // a = A082158
      if n eq 0 then return 1;
      else return (&+[Binomial(n,j)*(-1)^(n-j-1)*(j+1)^(3*n-3*j)*a(j): j in [0..n-1]]);
      end if;
    end function;
    [a(n): n in [0..20]]; // G. C. Greubel, Jan 17 2024
    
  • Mathematica
    a[n_] := If[n == 0, 1, Sum[-(-1)^(n-k) Binomial[n, k] (k+1)^(3(n-k)) a[k], {k, 0, n-1}]];
    Table[a[n], {n, 0, 11}] (* Jean-François Alcover, Aug 29 2019 *)
  • PARI
    {a(n)=polcoeff(1-sum(k=0, n-1, a(k)*x^k/(1+(k+1)^3*x+x*O(x^n))^(k+1)), n)}
    for(n=0,20,print1(a(n),", ")) \\ Paul D. Hanna, May 03 2015
    
  • PARI
    {a(n)=if(n==0, 1, sum(k=0, n-1, -(-1)^(n-k)*binomial(n, k)*(k+1)^(3*(n-k))*a(k)))}
    for(n=0,20,print1(a(n),", ")) \\ Paul D. Hanna, May 03 2015
    
  • SageMath
    @CachedFunction
    def a(n): # A082158
        if n==0: return 1
        else: return sum(binomial(n,j)*(-1)^(n-j-1)*(j+1)^(3*n-3*j)*a(j) for j in range(n))
    [a(n) for n in range(21)] # G. C. Greubel, Jan 17 2024

Formula

a(n) = a_3(n) where a_3(0) = 1, a_3(n) = Sum_{i=0..n-1} binomial(n, i)*(-1)^(n-i-1)*(i+1)^(3*n-3*i)*a_3(i), n > 0.
1 = Sum_{n>=0} a(n)*exp(-(1+n)^3*x)*x^n/n!. - Vladeta Jovovic, Jul 18 2005
From Paul D. Hanna, May 03 2015: (Start)
1 = Sum_{n>=0} a(n) * x^n/(1 + (n+1)^3*x)^(n+1).
1 = Sum_{n>=0} a(n) * C(n+m-1,n) * x^n/(1 + (n+1)^3*x)^(n+m) for all m>=1.
log(1+x) = Sum_{n>=1} a(n) * x^n/(1 + (n+1)^3*x)^n/n. (End)

Extensions

More terms from Michel Marcus, Aug 29 2019

A082172 A subclass of quasi-acyclic automata with 3 inputs, n transient and k absorbing labeled states.

Original entry on oeis.org

1, 1, 7, 1, 26, 315, 1, 63, 2600, 45682, 1, 124, 11655, 675194, 15646589, 1, 215, 37944, 4861458, 366349152, 10567689552, 1, 342, 100835, 23641468, 3882676581, 361884843866, 12503979423607, 1, 511, 232560, 89076650, 26387681120, 5318920238688, 591934698991168, 23841011541867520
Offset: 0

Views

Author

Valery A. Liskovets, Apr 09 2003

Keywords

Comments

Array read by antidiagonals: (0,1),(0,2),(1,1),(0,3),... . The first column is A082160.

Examples

			The array begins:
               1,            1,          1,           1,        1, ...;
               7,           26,         63,         124,      215, ...;
             315,         2600,      11655,       37944,   100835, ...;
           45682,       675194,    4861458,    23641468, 89076650, ...;
        15646589,    366349152, 3882676581, 26387681120, ...;
     10567689552, 361884843866, ...;
  12503979423607,  ...;
Antidiagonals begin as:
  1;
  1,   7;
  1,  26,    315;
  1,  63,   2600,    45682;
  1, 124,  11655,   675194,   15646589;
  1, 215,  37944,  4861458,  366349152,  10567689552;
  1, 342, 100835, 23641468, 3882676581, 361884843866, 12503979423607;
		

Crossrefs

Programs

  • Magma
    function A(n,k)
      if n eq 0 then return 1;
      else return (&+[(-1)^(n-j+1)*Binomial(n,j)*((k+j+1)^3-1)^(n-j)*A(j,k): j in [0..n-1]]);
      end if;
    end function;
    A082172:= func< n,k | A(k,n-k+1) >;
    [A082172(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 19 2024
    
  • Mathematica
    T[0, ] = 1; T[n, k_] := T[n, k] = Sum[Binomial[n, i]*(-1)^(n - i - 1)*((i + k + 1)^3 - 1)^(n - i)*T[i, k], {i, 0, n - 1}];
    Table[T[n-k, k], {n, 1, 9}, {k, n, 1, -1}]//Flatten (* Jean-François Alcover, Aug 27 2019 *)
  • SageMath
    @CachedFunction
    def A(n,k):
        if n==0: return 1
        else: return sum((-1)^(n-j+1)*binomial(n,j)*((k+j+1)^3-1)^(n-j)*A(j,k) for j in range(n))
    def A082172(n,k): return A(k,n-k+1)
    flatten([[A082172(n,k) for k in range(n+1)] for n in range(12)]) # G. C. Greubel, Jan 19 2024

Formula

T(n, k) = S_3(n, k) where S_3(0, k) = 1, S_3(n, k) = Sum_{i=0..n-1} (-1)^(n-i-1)*binomial(n, i)*((i+k+1)^3-1)^(n-i)*S_3(i, k), n > 0.

A103241 Unreduced numerators of the elements T(n,k)/(n-k)!, read by rows, of the triangular matrix P^-1, which is the inverse of the matrix defined by P(n,k) = (-k^3)^(n-k)/(n-k)! for n >= k >= 1.

Original entry on oeis.org

1, 1, 1, 15, 8, 1, 1024, 368, 27, 1, 198581, 53672, 2727, 64, 1, 85102056, 18417792, 710532, 11904, 125, 1, 68999174203, 12448430408, 386023509, 4975936, 38375, 216, 1, 95264160938080, 14734002979456, 381535651512, 3977848832, 23945000
Offset: 1

Views

Author

Paul D. Hanna, Feb 02 2005

Keywords

Comments

Define a triangular matrix P where P(n,k) = (-k^3)^(n-k)/(n-k)!, then M = P*D*P^-1 = A102098 satisfies M^3 = SHIFTUP(M) where D is the diagonal matrix consisting of {1,2,3,...}. The operation SHIFTUP(M) shifts each column of M up 1 row.
Essentially equal to square array A082170 as a triangular matrix. The first column is A082162 (enumerates acyclic automata with 3 inputs).

Examples

			Rows of unreduced fractions T(n,k)/(n-k)! begin:
  [1/0!],
  [1/1!, 1/0!],
  [15/2!, 8/1!, 1/0!],
  [1024/3!, 368/2!, 27/1!, 1/0!],
  [198581/4!, 53672/3!, 2727/2!, 64/1!, 1/0!],
  [85102056/5!, 18417792/4!, 710532/3!, 11904/2!, 125/1!, 1/0!], ...
forming the inverse of matrix P where P(n,k) = A103246(n,k)/(n-k)!:
  [1/0!],
  [-1/1!, 1/0!],
  [1/2!, -8/1!, 1/0!],
  [-1/3!, 64/2!, -27/1!, 1/0!],
  [1/4!, -512/3!, 729/2!, -64/1!, 1/0!], ...
		

Crossrefs

Programs

  • PARI
    {T(n,k)=my(P);if(n>=k&k>=1, P=matrix(n,n,r,c,if(r>=c,(-c^3)^(r-c)/(r-c)!))); return(if(n
    				

Formula

For n > k >= 1: 0 = Sum_{m=k..n} C(n-k, m-k)*(-m^3)^(n-m)*T(m, k).
For n > k >= 1: 0 = Sum_{j=k..n} C(n-k, j-k)*(-k^3)^(j-k)*T(n, j).
Showing 1-4 of 4 results.