A082343 Numerator of sopfr(n)/n, where sopfr=A001414 is the sum of prime factors (with repetition).
0, 1, 1, 1, 1, 5, 1, 3, 2, 7, 1, 7, 1, 9, 8, 1, 1, 4, 1, 9, 10, 13, 1, 3, 2, 15, 1, 11, 1, 1, 1, 5, 14, 19, 12, 5, 1, 21, 16, 11, 1, 2, 1, 15, 11, 25, 1, 11, 2, 6, 20, 17, 1, 11, 16, 13, 22, 31, 1, 1, 1, 33, 13, 3, 18, 8, 1, 21, 26, 1, 1, 1, 1, 39, 13, 23, 18, 3, 1, 13, 4, 43, 1, 1, 22, 45, 32, 17
Offset: 1
Examples
n=200: (2+2+2+5+5)/(2*2*2*5*5) = 16/(2*2*2*5*5) = (2*2*2*2)/(2*2*2*5*5) = 2/25, therefore a(200)=2, A082344(200)=25.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Programs
-
Mathematica
sopfr[n_] := If[n == 1, 0, Total[Times @@@ FactorInteger[n]]]; a[n_] := Numerator[sopfr[n]/n]; Array[a, 100] (* Jean-François Alcover, Dec 03 2021 *)
-
PARI
A001414(n) = ((n=factor(n))[, 1]~*n[, 2]); \\ From A001414. A082299(n) = gcd(n, A001414(n)); A082343(n) = A001414(n)/A082299(n); \\ Antti Karttunen, Mar 04 2018
Comments