cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A082299 Greatest common divisor of n and its sum of prime factors (with repetition).

Original entry on oeis.org

1, 2, 3, 4, 5, 1, 7, 2, 3, 1, 11, 1, 13, 1, 1, 8, 17, 2, 19, 1, 1, 1, 23, 3, 5, 1, 9, 1, 29, 10, 31, 2, 1, 1, 1, 2, 37, 1, 1, 1, 41, 6, 43, 1, 1, 1, 47, 1, 7, 2, 1, 1, 53, 1, 1, 1, 1, 1, 59, 12, 61, 1, 1, 4, 1, 2, 67, 1, 1, 14, 71, 12, 73, 1, 1, 1, 1, 6, 79, 1, 3, 1, 83, 14, 1, 1, 1, 1, 89, 1, 1, 1, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 08 2003

Keywords

Comments

For n > 4, a(n) = n iff n is prime.

Examples

			a(100) = GCD(2*2*5*5,2+2+5+5) = GCD(2*2*5,2*7) = 2;
a(200) = GCD(2*2*2*5*5,2+2+2+5+5) = GCD(2*2*2*5,2*2*2*2) = 8.
		

Crossrefs

Cf. A001414, A082300 (positions of ones), A082343, A082344.
Cf. also A099635, A099636.

Programs

Formula

a(n) = gcd(n, A001414(n)).
a(n) = n / A082344(n) = A001414(n) / A082343(n). - Antti Karttunen, Feb 01 2021

A082344 Denominator of sopfr(n)/n, where sopfr=A001414 is the sum of prime factors (with repetition).

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 4, 3, 10, 1, 12, 1, 14, 15, 2, 1, 9, 1, 20, 21, 22, 1, 8, 5, 26, 3, 28, 1, 3, 1, 16, 33, 34, 35, 18, 1, 38, 39, 40, 1, 7, 1, 44, 45, 46, 1, 48, 7, 25, 51, 52, 1, 54, 55, 56, 57, 58, 1, 5, 1, 62, 63, 16, 65, 33, 1, 68, 69, 5, 1, 6, 1, 74, 75, 76, 77, 13, 1, 80, 27, 82, 1, 6
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 09 2003

Keywords

Comments

Numerator is A082343(n) = A001414(n)/A082299(n).

Examples

			n=200: (2+2+2+5+5)/(2*2*2*5*5) = 16/(2*2*2*5*5) = (2*2*2*2)/(2*2*2*5*5) = 2/25, therefore a(200)=25, A082343(200)=2.
		

Crossrefs

Programs

  • Mathematica
    sopd[n_]:=Module[{f=Flatten[Table[#[[1]],#[[2]]]&/@FactorInteger[n]]}, Denominator[ Total[f]/n]]; Array[sopd,90] (* Harvey P. Dale, Jul 24 2018 *)
    sopfr[n_] := If[n == 1, 0, Total[Times @@@ FactorInteger[n]]];
    a[n_] := Denominator[sopfr[n]/n];
    Array[a, 100] (* Jean-François Alcover, Dec 03 2021 *)
  • PARI
    A001414(n) = ((n=factor(n))[, 1]~*n[, 2]); \\ From A001414.
    A082299(n) = gcd(n, A001414(n));
    A082344(n) = (n/A082299(n)); \\ Antti Karttunen, Mar 04 2018

Formula

a(n) = n/A082299(n).

A340678 a(n) = A008472(n) / gcd(A007947(n), A008472(n)).

Original entry on oeis.org

0, 1, 1, 1, 1, 5, 1, 1, 1, 7, 1, 5, 1, 9, 8, 1, 1, 5, 1, 7, 10, 13, 1, 5, 1, 15, 1, 9, 1, 1, 1, 1, 14, 19, 12, 5, 1, 21, 16, 7, 1, 2, 1, 13, 8, 25, 1, 5, 1, 7, 20, 15, 1, 5, 16, 9, 22, 31, 1, 1, 1, 33, 10, 1, 18, 8, 1, 19, 26, 1, 1, 5, 1, 39, 8, 21, 18, 3, 1, 7, 1, 43, 1, 2, 22, 45, 32, 13, 1, 1, 20, 25, 34, 49, 24, 5, 1, 9
Offset: 1

Views

Author

Antti Karttunen, Feb 01 2021

Keywords

Crossrefs

Programs

Formula

a(n) = A008472(n) / A099636(n) = A008472(n) / gcd(A007947(n), A008472(n)).

A381249 Indices of records in k/A001414(k), k>=2.

Original entry on oeis.org

2, 6, 8, 9, 12, 15, 16, 18, 24, 27, 32, 36, 40, 45, 48, 54, 60, 64, 72, 80, 81, 90, 96, 108, 120, 128, 135, 144, 160, 162, 180, 192, 216, 240, 243, 270, 288, 320, 324, 360, 384, 405, 432, 480, 486, 540, 576, 640, 648, 720, 729, 810, 864, 960, 972, 1024, 1080, 1152
Offset: 1

Views

Author

Clark Kimberling, Apr 19 2025

Keywords

Comments

Except for initial 2, this is a subsequence of A381972.

Examples

			f(2) = 1 < f(6) = 6/5 < f(8) = 4/3 < f(9) = 3/2 < f(12) = 12/7, where f(k) = k/A001414(k).
		

Crossrefs

Programs

  • Mathematica
    z = 800; g[n_] := FactorInteger[n];
    f[n_] := Map[First, g[n]] . Map[Last, g[n]];
    mx = -1; k = 2; u = {}; While[k < z, a = k/f[k]; If[a > mx, mx = a; AppendTo[u, k]]; k++]; u
  • PARI
    sopfr(n) = (n=factor(n))[, 1]~*n[, 2];
    lista(nn) = my(r=oo, list=List()); for (n=2, nn, my(x=sopfr(n)/n); if (x < r, listput(list, n); r = x)); Vec(list); \\ Michel Marcus, Apr 27 2025

Extensions

More terms from Michel Marcus, Apr 27 2025

A381972 Numbers k>=3 such that k/A001414(k) > (k-1)/A001414(k-1).

Original entry on oeis.org

6, 8, 9, 12, 14, 15, 16, 18, 20, 24, 27, 30, 32, 35, 36, 38, 39, 40, 42, 44, 45, 48, 50, 52, 54, 56, 60, 62, 63, 64, 66, 68, 70, 72, 74, 75, 77, 78, 80, 81, 84, 87, 88, 90, 95, 96, 98, 100, 102, 104, 105, 108, 110, 112, 114, 117, 119, 120, 123, 124, 125, 126
Offset: 1

Views

Author

Clark Kimberling, Mar 16 2025

Keywords

Comments

1 <= a(n+1) - a(n) <= 10 for n = 2..3000000.

Examples

			f(2) = 1 < f(6) = 6/5 < f(8) = 4/3 < f(9) = 3/2 < f(12) = 12/7, where f(k) = k/A001414(k).
		

Crossrefs

Programs

  • Mathematica
    z = 200; f[n_] := FactorInteger[n];
    g[n_] := Map[First, f[n]] . Map[Last, f[n]];
    h[n_] := If[n/g[n] > (n - 1)/g[n - 1], n, 0];
    Rest[Union[Table[h[n], {n, 2, z}]]]

Extensions

Definition corrected by Clark Kimberling, May 08 2025
Showing 1-5 of 5 results.