A082344 Denominator of sopfr(n)/n, where sopfr=A001414 is the sum of prime factors (with repetition).
1, 1, 1, 1, 1, 6, 1, 4, 3, 10, 1, 12, 1, 14, 15, 2, 1, 9, 1, 20, 21, 22, 1, 8, 5, 26, 3, 28, 1, 3, 1, 16, 33, 34, 35, 18, 1, 38, 39, 40, 1, 7, 1, 44, 45, 46, 1, 48, 7, 25, 51, 52, 1, 54, 55, 56, 57, 58, 1, 5, 1, 62, 63, 16, 65, 33, 1, 68, 69, 5, 1, 6, 1, 74, 75, 76, 77, 13, 1, 80, 27, 82, 1, 6
Offset: 1
Examples
n=200: (2+2+2+5+5)/(2*2*2*5*5) = 16/(2*2*2*5*5) = (2*2*2*2)/(2*2*2*5*5) = 2/25, therefore a(200)=25, A082343(200)=2.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Programs
-
Mathematica
sopd[n_]:=Module[{f=Flatten[Table[#[[1]],#[[2]]]&/@FactorInteger[n]]}, Denominator[ Total[f]/n]]; Array[sopd,90] (* Harvey P. Dale, Jul 24 2018 *) sopfr[n_] := If[n == 1, 0, Total[Times @@@ FactorInteger[n]]]; a[n_] := Denominator[sopfr[n]/n]; Array[a, 100] (* Jean-François Alcover, Dec 03 2021 *)
-
PARI
A001414(n) = ((n=factor(n))[, 1]~*n[, 2]); \\ From A001414. A082299(n) = gcd(n, A001414(n)); A082344(n) = (n/A082299(n)); \\ Antti Karttunen, Mar 04 2018
Formula
a(n) = n/A082299(n).
Comments