A082369 Numbers congruent to 13 mod 30.
13, 43, 73, 103, 133, 163, 193, 223, 253, 283, 313, 343, 373, 403, 433, 463, 493, 523, 553, 583, 613, 643, 673, 703, 733, 763, 793, 823, 853, 883, 913, 943, 973, 1003, 1033, 1063, 1093, 1123, 1153, 1183, 1213, 1243, 1273, 1303, 1333, 1363, 1393, 1423, 1453
Offset: 1
Links
- Michael G. Kaarhus, Table of n, a(n) for n = 1..10000
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Programs
-
Mathematica
Range[13, 7000, 30] (* Vladimir Joseph Stephan Orlovsky, Jul 13 2011 *) LinearRecurrence[{2,-1},{13,43},50] (* Harvey P. Dale, Mar 02 2023 *)
-
Maxima
f(a):= mod((19^a + 23^a),31)$ a:-1$ for n:1 thru 3000 step 0 do(a:a+1, if f(a)=29 then (if mod(a,30)=13 then (print(n," ",a), n:n+1) else (print("Exception at ",a,", ",f(a)), n:3001))); /* f(a)==29 only when a is cong. to 13 (mod 30). No exceptions thru a=89983, n=3000. Michael G. Kaarhus, Nov 18 2013 */
-
PARI
anpbn(n)= for(x=1,n, if((19^x+23^x-29)%31==0,print1(x, ", "))) \\ solutions to 19^x+23^x == 29 mod 31
Formula
a(n) = 30n + 13.
G.f.: x*(13+17*x)/(1-x)^2. - Colin Barker, Jan 11 2012
Extensions
Simpler name from Charles R Greathouse IV, Nov 19 2013
Comments